Visual-Motor interactions

03/07/05 Wesley Beam

Underlying Goals

 Discuss the interactions between various neurological systems. Particularly How the vision and motor control work together.

Question how we think about thinking.

Point of View

Neural-Behavioral approach

- How does the brain create and control behaviors?
- How can we measure it?
- What can we learn?

Some Quick Facts

- The brain is a squishy mass of seemingly randomly interconnected cells that sits in a protective fluid sack inside a skull
- There are areas that roughly correlate to various sensor and motor 'systems'

Interactions

How much feedback from the visual system does the motor control need?

If the visual system's input was impeded in some way, how would this affect limb movement?

An Experiment

- An LED and IR emitter unit is attached to a subject's right index finger.
- The room is completely darkened so that the only visual information the subject receives is from the LED.
- The subject is then tasked with reaching tasks under varying conditions (full visual, intermittent visual and, no vision conditions)

More on the Experiment

- The IR part allows us to measure lots of interesting things:
 - Time
 - Accuracy
 - Velocity
 - Movement Path
- We can use this information to infer how independently these systems work

Difficulties

- This experiment hinges on the fact that other systems aren't interfering with the movement.
 - The only hedge against this is that the task is extremely fast (<500ms)
- Inferring data is inferior to direct measurements
 - The physical design of the brain does not allow for meaningful direct measurements.

Bibliography

- Cullen, J., W. Helsen, et al. (2001). "The utilization of visual information in the control of reciprocal aiming movements." <u>Human Movement Science</u>(20).
- Elliott, D., R. Chau, et al. (1994). "The influence of intermittent vision on manual aiming." <u>Acta</u> <u>Psychologia</u>(85).
- Gazzinga, M. S., R. B. Ivry, et al. (2002). <u>Cognitive</u> <u>Neuroscience</u>, Norton.