
Levels of Granularity in Cognitive Modeling 
Eric Nichols 

 

1. Introduction 
Within each general modeling paradigm, such as connectionism or dynamical systems, any particular 
model also makes a choice as to the desired level of granularity. A connectionist model might 
attempt to capture details of individual neurons, as in a retinal model, or else it might allow the 
model’s nodes to represent larger abstract groupings of functionally related neurons. This paper 
surveys several broad classes of cognitive models with respect to their stance on model granularity.  

In addition to examining traditional cognitive models, this paper also discusses how we might 
attempt to overcome the granularity divide amongst these models. In particular, we point towards 
Holland’s work on emergent behavior in complex adaptive systems as paving the way for 
understanding cognition more deeply at multiple levels of granularity. We begin by motivating the 
discussion by examining the goals of cognitive modeling. 

2. Purpose of Modeling 
The primary reason to build a model of a physical system is arguably to make prediction possible. 
While the best possible model of any system would be a facsimile of the system itself, such a “model” 
provides little predictive power. We might build a scale replica of our solar system, but Kepler’s laws 
of planetary motion allow us to immediately make predictions far into the future that would be 
impossible with the replica [Holland 1998]. Of course, predictive power due to simplification of 
reality comes at the price of loss of predictive accuracy. Indeed, Holland claims that “the single most 
important factor in making an accurate prediction is the level of detail” [Holland 2002]. A key task 
facing a modeler is to choose the level of detail that best balances amount of detail and predictive 
power. Note that, in general, including more details does not necessarily lead to more accuracy, due 
to the complexities inherent in simulating complex systems. Effects of numerical instability or 
chaotic dynamics, for instance, can overwhelm models that work with too much detail for the 
predictive task. 

Due to complexity, prediction with a high degree of accuracy may not be possible in a model 
uninformed by a requisite amount of understanding. The modeler needs to select not only the 
amount of detail to include in a model, but also the general types of structures that make up the 
model. A model of the weather, for instance, might explicitly include such high-level structures as 
storm fronts or the jet stream. A forecaster might either hope for these features to emerge from a 
lower-level model or else build these into the model up-front. The choice has important 
ramifications: a model based on the higher-level granularity of storm fronts might be more reliable in 
some situations, while a lower-level model based on features like air pressure and moisture content 
might perform better in other cases. Deep understanding of the system under consideration is 
necessary to posit higher-level features and to describe their dynamics. A secondary motivation for 
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modeling is to gain the understanding necessary to develop richer models to aid the primary goal of 
prediction.  

What is the goal of cognitive modeling? 
As a cognitive scientist it seems reasonable that the goal of cognitive modeling is to better understand 
the internal mechanisms of thought, to see how thinking “really” works. The study of cognition has 
particular significance as it is closely related to deep philosophical questions about the nature of 
mind and consciousness. But we can productively sidestep the issue of philosophy of mind by 
recalling the secondary motivation of modelers above, and focus on understanding thought 
mechanisms in service of building better-informed predictive models of cognitive processes.  

Marr proposes three different levels of explanation for use in understanding cognitive systems: 1) 
computational theory (input-output analysis), 2) representation and algorithm, and 3) 
implementation [Marr 1982]. Clark argues that although this division into three distinct levels may 
be “too neat”, it points out how understanding a single level such as the neural substrate of the brain 
is not sufficient to understand how computation is organized at larger levels of granularity.  

The word “level” is used here in different contexts, so it is important to keep the uses distinct. Marr’s 
three levels refer to the three distinct types of analysis listed above. The level of granularity in a 
model refers to the relative size of the units of representation. 

3. Reconciliation of levels 

The need for bridge-building 
As mentioned above regarding connectionism, we don’t have a principled way to simplify from vast 
numbers of neurons down to a manageable set for use in a connectionist simulation. Such a strategy 
for simplification would also be useful to other cognitive approaches such as dynamical systems and 
physical symbol systems. Even more interesting is the possibility for building connections between 
different modeling strategies. We would like to see how a connectionist model would produce 
something like a PSS at a higher level. Hofstadter [1986] also seeks such a bridge between levels: 

The best traditional AI (and cognitive psychology) is something like classical physics: true on 
all scales, but in some sense “irrelevant” on a large scale. The problem is therefore to link 
these two vastly different levels. In physics, the “correspondence principle” says that the 
equations of quantum mechanics must turn into their classical counterparts in the limit of 
large quantum numbers. In that sense, a beautiful bridge is rigorously established between 
the unfamiliar micro-world and the familiar macro-world. I would like see such a bridge 
established between connectionism and the study of cognition itself, which includes 
traditional AI, cognitive psychology, linguistics, and the philosophy of mind. 

In astronomy, the bridge-building problem was as simple as calculating a center of mass and 
discarding negligible gravitational effects. How can we find analogous cognitive centers of mass? 
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Emergence 
In his study of complex adaptive systems, Holland [1988] provides ideas about how to study 
complex emergent behavior. The link between lower and higher cognitive levels, such as a link 
between connectionism and PSS, can be viewed as understanding how symbols can emerge from the 
interaction of vast numbers of neurons. Both Holland and Clark [2001] emphasize the role of 
persistent patterns in the study of emergence. Holland writes that “Only persistent patters will have a 
directly traceable influence on future configurations in generated systems… the persistent patterns 
are the only ones that lend themselves to a consistent observable ontogeny.”  

In a complex system, if patterns emerge, they can be used as the basis for prediction. A model that 
accounts for higher-level patterns can thus escape the facsimile trap and generate predictions without 
simply simulating every small detail of the original system. These emergent patterns will pave the 
way towards bridge-building – if connectionism and a higher-level theory like PSS are to be 
consistent, the emergent patterns of a connectionist network will at some point match up with the 
higher-level symbols.  

One difficulty of prediction in a complex system is the worry that emergent phenomena are 
“uncompressible” in terms of predictable patterns, that is, they are “those phenomena for which 
prediction requires simulation.” [Clark 2001] Clark counters this pessimistic attitude, however, 
writing that  

My intuition, by contrast is that emergent phenomena are often precisely those phenomena in 
which complex interactions yield robust, salient patterns capable of supporting prediction and 
explanation, i.e., that lend themselves to various forms of low-dimensional projection. 

There is, then, room for optimism. However, it is worth noting that a viable, predictive theory of 
emergent behavior in complex systems is still a distant goal. It is imperative, however, that cognitive 
science embrace and support the search for such a theory, as the lack of bridges between levels will 
remain a serious obstacle to cognitive science for the foreseeable future. 

References 
Clark, A. (2001). Mindware. New York: Oxford University Press. 

Hofstadter, D. R. (1986). “Impressions of AI”. Internal memo, University of Michigan. 

Holland, J. (1998). Emergence. New York: Basic Books. 

Holland, J. (2002). What Is to Come and How to Predict It. In Brockman, J. (ed.), The Next Fifty 
Years. New York: Vintage Books. 

Marr, D. (1982). Vision. San Francisco: W.H. Freeman. 

Newell, A. and Simon, H. (1976). In Haugeland, J. (ed.), Mind Design II, Cambridge, MA: MIT 
Press, 1997, pp. 81-110. 

 


