
The conceptual framework that we bring to the study of
cognition can have profound empirical consequences on the
practice of cognitive science. It influences the phenomena we
choose to study, the questions we ask about these phenom-
ena, the experiments we perform, and the ways in which we
interpret the results of these experiments. Until relatively re-
cently, there was ‘only one game in town’1 – the computa-
tional hypothesis that underlying cognition is the purely
formal manipulation of quasi-linguistic symbolic represen-
tations by syntactic rules1–3. However, in the mid-1980s, the
theoretical imagination of cognitive science was significantly
expanded by the proliferation of connectionist models4–6.
More recently, there has been a growing interest in dynamical
approaches to cognitive science7–12. Drawing upon the math-
ematical tools of dynamical systems theory (see Box 1), a dy-
namical analysis of a cognitive process seeks to understand the
unfolding of that process over time and the multiple internal
and external influences whose interplay shapes this unfolding.
In this article, I will briefly review three rather different exam-
ples of this dynamical approach to cognition. I will then com-
pare and contrast this approach with the more traditional
symbolic and connectionist approaches, and briefly discuss
some of the contributions that dynamical ideas are making to
ongoing debates about the foundations of cognitive science.

The lexical and grammatical structure of language
Language, that quintessentially human cognitive skill, is often
seen as the strongest argument against non-symbolic ap-
proaches to cognition13,14. However, despite its symbolic char-
acter, language understanding and production are essentially
temporal events, with preceding words strongly influencing
the interpretation or selection of later ones. For this reason,

language has been a major focus of dynamical modeling,
ranging from models of the temporal structure of speech
perception and production15,16 to more abstract models of
grammatical structure17–19. A good illustration of the devel-
opment of a connectionist approach to language in which
dynamical notions play a fundamental role is provided by the
work of Elman20. Elman’s models utilize simple recurrent
networks21, a variation of multilayer feedforward networks
in which the hidden layer also receives inputs from a set of
context units that hold the state of the hidden units from
the previous time step. Such networks are non-autonomous
discrete-time dynamical systems (see Box 1).

In one experiment, Elman used backpropagation to train
a simple recurrent network to predict subsequent words in a
sentence using a corpus of 10 000 short sentences formed
from a vocabulary of 29 nouns and verbs21. Predicting word
order requires the network to learn the frequency of occur-
rence of each possible successor word for each possible con-
text, a task that demands a memory of previously seen words
and an understanding of the grammatical structure of lan-
guage. After training, a hierarchical cluster analysis of the
hidden-unit activations for each word averaged across all con-
texts revealed that the trained network developed an internal
dynamics whose organization reflected grammatical category
and meaning. Specifically, it exhibited a major division into
nouns and verbs, and subdivisions into animate and inani-
mate nouns and transitive, intransitive and optionally tran-
sitive verbs, and so on. However, a finer analysis that did not
average over context revealed small but systematic differences
between different senses and roles of words (e.g. ‘boy’ as sub-
ject versus ‘boy’ as object). Thus, a network state did not
correspond to a word per se, as a traditional representational
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analysis might expect, but rather to the outcome of processing
a word within a particular context.

In a second experiment, Elman extended this work to
longer and more complex sentences with long-distance de-
pendencies involving number agreement, verb argument
structure, and relative clauses22. The dynamics of a network
trained on the prediction task was then examined by plotting
projections of the trajectories of hidden-unit activation pro-
duced by sample sentences. The trajectory produced by the
sentence ‘Boy who chases boy chases boy’ is shown in Fig. 1.
Note that occurrences of the same word at different points
in the sentence leave the network in different states. These
differences in network state correspond to the network’s
memory of the information required to process long-distance
dependencies correctly. Because the local dynamics at each
point determine the effect that subsequent words can have on

the network state, grammatical constraints are manifested
in the structure of the network dynamics itself. Thus, as a
sentence is processed, each word drives the network along
one of the different trajectories allowed by the dynamics at
that point, with context manifested as variations in state that
influence subsequent processing.

The network can also process more deeply embedded
clauses. Interestingly, its performance degrades with embed-
ding depth more quickly on centered-embedded sentences
(e.g. ‘Witch that tiger that tinman hears sees tames lion’) than
on right-branching sentences (e.g. ‘Tinman hears tiger that sees
witch that tames lion’), a pattern that is also observed in human
language understanding23. More recent work has explored the
linguistic capabilities of recurrent networks in greater depth
and has provided a more detailed understanding of how 
dynamics can be harnessed to solve language problems24.
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Because the terminology of dynamical systems theory is likely to be
unfamiliar to many cognitive scientists, I will briefly review it here.
(More comprehensive but still novice-friendly introductions can
be found in Refs a and b.)

The concept of a dynamical system is very general. Loosely speak-
ing, a dynamical system is a mathematical object that unambigu-
ously describes how the state of some system evolves over time.
More formally, a dynamical system is a triple <T, S, ft> consisting
of an ordered time set T, a state space S, and an evolution operator
ft : S→S that transforms an initial state x0 [ S at time t0 [ T to

another state xt [ S at time t [ T. The time set T may be con-
tinuous or discrete. The state space S may be numerical or sym-
bolic, continuous or discrete or a hybrid of the two, and it may
be finite- or infinite-dimensional depending on the number of
variables required to fully describe the state of the system. ft may
be given explicitly or defined implicitly, it may be deterministic
or stochastic and it may have inputs (non-autonomous) or not
(autonomous). Sets of differential or difference equations, cellular
automata, finite state machines and Turing machines are all ex-
amples of dynamical systems. Dynamical systems theory offers a

Fig. I. Some basic concepts from dynamical systems theory. (a) A vector field showing the instantaneous direction and magnitude of
change at each point in the state space. (b) A flow showing representative solution trajectories of the system. (c) A phase portrait showing the
limit sets, their stabilities, and their basins of attraction. Dots denote equilibrium points and the circular blue trajectory is a limit cycle. Stable limit
sets are colored blue, unstable limit sets are red and saddle limit sets are green. The other blue trajectory and the red trajectory correspond to
the stable and unstable manifolds, respectively, of the saddle point. The stable manifold of the saddle point separates the basin of attraction of
the limit cycle (light gray) from the basin of attraction of the stable equilibrium point (dark gray). (d) A bifurcation diagram showing how the
y2 projection of the phase portrait changes as a parameter p1 is varied. The color conventions are the same as in (c) except that bifurcation
points are shown as black dots. The parameter slice corresponding to the phase portrait in (c) is shown as a dashed line. (e) A parameter
chart showing regions of parameter space with distinct phase portraits as two parameters (p1, p2) are varied. Identically colored regions
have qualitatively similar phase portraits. The parameter slice corresponding to the bifurcation diagram in (d) is shown as a dashed line.

Box 1. A brief introduction to dynamical systems theory



The A-not-B error in infant reaching
Work on motor behavior, especially within the ecological
psychology tradition, has a long history of dynamical think-
ing9,25–29, and some of this work has begun to probe develop-
mental questions of strong cognitive interest7. For example,
Thelen, Schöner, Scheier and Smith30 have developed a dy-
namical model of Piaget’s classic ‘A-not-B’ error in infants of
7–12 months of age31. In this task, an infant is faced with two
similar opaque containers with lids (Fig. 2). Initially, an infant
is trained to reach reliably for an object hidden in container A
shortly after they observe it being hidden there. If the object
is now hidden in container B in full view of the infant and a
short delay is imposed, the majority of 7–12-month-old in-
fants will still attempt to retrieve the object from container A.
Piaget originally interpreted this error in terms of an immature
concept of object permanence. However, numerous experi-

mental studies have demonstrated that this error is remark-
ably sensitive to context32. For example, infants are less likely
to make the A-not-B error if (1) the two containers are made
visually distinct, (2) there is no delay between hiding and
reaching, (3) the infant is highly interested in the object being
hidden (e.g. a cookie), or (4) the infant’s posture changes
between the A trials and the B trial. Another intriguing ob-
servation is that fewer infants make the A-not-B error if they
are only required to look to the correct container rather
than reach for it. Such patterns of context sensitivity must
be explained by any contending theory of the A-not-B error.

In order to account for these observations, Smith and
Thelen7 sketched a dynamical model that was subsequently
fleshed out in collaboration with Schöner and Scheier30 using
a general dynamical theory of motor programming33. The
core of the model is a one-dimensional field that gives the
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wide variety of tools for visualizing and analysing the temporal
behavior of such systems.

Consider a particular two-dimensional continuous-time
dynamical system from Ref. c, where ft is given implicitly by two
autonomous differential equations y.1 = f1 (y1,y2) and y.2 = f2 (y1,y2).
These two differential equations define a vector field, which
assigns an instantaneous direction and magnitude of change to
each point in the state space (Fig. Ia). Starting from some initial
state, the sequence of states generated by the action of the
dynamics is called a solution trajectory. Such a trajectory has the
property that its tangent at each point is given by the vector field
at that point. The set of all possible solution trajectories is called
the flow, which graphically illustrates the action of the evolution
operator ft (Fig. Ib). Unfortunately, explicit expressions for the
solutions to most nonlinear sets of differential equations are not
available. It was the great insight of Henri Poincaré, the father of
the modern qualitative or geometric theory of dynamical systems,
that a great deal of information about the flow of a dynamical
system can be extracted without having an explicit expression for
its solution trajectories.

Of particular interest is the possible long-term behavior of a
dynamical system. Over time, the state of many dynamical sys-
tems eventually ends up in a small subset of the state space called
a limit set. A limit set is invariant with respect to the dynamics,
so that if the system’s state ever falls on a limit set, the dynamics
will act to keep it there indefinitely. Two simple types of limits sets
are equilibrium points and limit cycles. An equilibrium point is
a limit set consisting of a single point, producing a constant behav-
ior (dots in Fig. Ic), while a limit cycle is a trajectory that closes
on itself, producing an endless rhythmic behavior (closed blue
curve in Fig. Ic). For stable limit sets or attractors, all nearby tra-
jectories converge to the limit set, so that small perturbations away
from the limit set will return there (blue equilibrium point and
blue limit cycle in Fig. Ic). In contrast, any perturbation from an
unstable limit set will not return to that limit set, but will instead
be carried elsewhere by the dynamics (red equilibrium point in
Fig. Ic). Finally, saddle limit sets are generally unstable, but have
some special directions that are stable (green equilibrium point in
Fig. Ic; the stable directions are indicated by the incoming blue
curves).

In general, a dynamical system will possess multiple limit sets,
with each attractor surrounded by a set of points that converge to
it over time. This set of points is called its basin of attraction. In

Fig. Ic, the dark gray region is the basin of attraction of the blue
equilibrium point and the light gray region is the basin of attrac-
tion of the blue limit cycle. Note how the two trajectories near the
middle of the right side of Fig. Ib end up in very different final
locations. This is because the upper trajectory begins in the basin of
attraction of the blue equilibrium point, while the lower trajec-
tory begins in the basin of attraction of the limit cycle. A global
characterization of all the limit sets of a dynamical system and
their stabilities and basins of attraction is called a phase portrait
(Fig. Ic). Such a portrait summarizes the different dynamical
behaviors that a system can exhibit and where in its state space
these different behaviors can be found.

If the flow depends on parameters, then it will change as those
parameters are varied. In general, the flow will change smoothly.
However, at bifurcation points, the topological type of the flow
can change drastically even as the parameters are smoothly varied,
with limit sets appearing, disappearing, or changing their stabil-
ity. A bifurcation diagram illustrates how the phase portrait of a
dynamical system depends on a parameter (Fig. Id). Here bifur-
cation points are shown as black dots. At small values of p1, only
a single stable equilibrium point occurs (upper blue line). As p1

increases, a pair of equilibrium points appear, one unstable (red
curve) and one saddle (green cruve). At still larger values of p1, a
stable limit cycle appears (gray region bounded by blue curve).
This is the situation corresponding to Fig. Ic. Finally, as p1 is
increased even further, the size of the limit cycle shrinks to zero,
leaving two stable equilibrium points separated by a saddle point.
If two parameters are varied simultaneously, then regions of param-
eter space that exhibit different phase portraits may exist, and the
boundaries between these distinct regions correspond to bifur-
cations. A map of the layout of these regions in parameter space
and the boundaries between them is called a parameter chart
(Fig. Ie). Together, bifurcation diagrams and parameter charts
describe the range of dynamical behavior that a system is capable
of producing and how that behavior changes as parameters are
varied.
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probability of reaching in a given direction. This ‘movement
planning field’ (Fig. 2, light blue) receives two inputs describ-
ing the visual appearance of the scene: a constant ‘task input’
with peaks at A and B representing the two containers (Fig. 2,
green), and a ‘specific input’ with a transient peak at either A or
B representing the visual cue used to draw the infant’s atten-
tion to the target object (Fig. 2, red). In addition, the move-
ment planning field receives input from a one-dimensional
‘memory field’ that maintains a memory of recent reaches
(Fig. 2, dark blue). The movement planning field also has a
resting level that affects its ability to generate self-sustaining
activity, as well as a source of noise. The model is thus 
an infinite-dimensional, continuous-time, stochastic, non-
autonomous dynamical system (it is infinite-dimensional be-
cause its state is described by two continuous one-dimensional
fields rather than a discrete set of state variables).

When the resting level of the field is low, the model
produces the A-not-B error (Fig. 2, non-cooperative regime).
In order to model the effects of training, the task input has
an initial bias favoring A that decreases in subsequent trials.
Initially, the model is exposed to repeated A trials by cueing
it with a specific input with a peak at A. This produces a
strong tendency to reach to A in the movement planning
field and a memory of previous reaches to A in the memory
field. Then, the model is cued with a specific input with a
peak at B and a delay is imposed. Although the movement
planning field initially develops a peak at B, this peak quickly
decays over time, and the memory of earlier reaches to A domi-
nates. Interestingly, when the resting level of the movement

planning field is high (Fig. 2, cooperative regime), the initial
peak at B does not decay and the error is not produced.

Thus, this model suggests that the A-not-B error is due
to an immature goal-directed reaching system rather than an
immature concept of object permanence. On this dynamical
account, the A-not-B error arises from the inability of the
movement planning field to sustain a visually cued reach in a
novel direction in the presence of a sufficiently strong mem-
ory of previous reaches. This suggests that the ability of the
movement planning field to generate self-sustaining activity
might be an important developmental parameter. The model
can also account for the observed contextual effects (e.g. no
error occurs when the delay between visual cue and reach is
removed because the initial peak at B does not have to be sus-
tained). It also makes several novel predictions (e.g. if the error
arises from the general properties of goal-directed reaching,
then it should be possible to observe it in older children as well
if the visual cue is sufficiently weak and brief, the visual scene
is sufficiently ambiguous, and the delay is sufficiently long).

Active categorical perception in an evolved model agent
Dynamical approaches in autonomous agents and robotics
have also been an active area of research over the past ten
years34–38. Of particular interest to the present discussion is
work in which an evolutionary approach to the design of dy-
namical ‘nervous systems’ for model agents34,36 is applied to
the study of ‘minimally cognitive behavior’ (the simplest be-
havior that begins to raise questions of cognitive interest39–41).
The dynamics of the evolved agents are then analyzed10,42.
Studying simpler models that exhibit the basic features of a
situated cognitive agent, but that are amenable to detailed
experimental and theoretical analysis, is a powerful strategy
for exploring the implications of a dynamical perspective43.

In one study, a model agent was evolved to visually dis-
criminate between two classes of objects of the same size,
specifically, to catch circles and avoid diamonds39. The agent
could move back and forth along a horizontal line while ob-
jects fell towards it from above (Fig. 3a). Using seven rays, the
agent could sense the distance to each point of intersection
between a ray and a falling object. The agent was controlled
by a 14-neuron, continuous-time recurrent neural network44.
The parameters of the neural network were set by an evolu-
tionary algorithm45 so as to minimize the final horizontal sep-
aration for circles and maximize the final horizontal separation
for diamonds.

On this task, the best agent achieved an average perfor-
mance of 99% on 100 random trials. The strategy that this
agent used was first to foveate and then actively scan any ob-
ject that appeared in its field of view. As the object neared, the
agent would either decrease the amplitude of the scan until
the object was centered (if it was a circle) or make a large
avoidance movement (if it was a diamond) (results shown in
Fig. 3b). Given the coarse resolution of the agent’s seven rays,
it is likely that active scanning accentuates the small differ-
ences between a circle and a diamond. Interestingly, active con-
trol of gaze direction has become an important theme in vision
research46,47. Probing the agent with a class of objects that
smoothly interpolated between circles and diamonds revealed a
sigmoidal classification curve with a relatively sharp transition,
a classic characteristic of categorical perception48. Experiments
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Fig. 1. A projection of the trajectory of a word prediction
network as the sentence ‘boy who chases boy chases boy’
is processed. As each word is presented to the network, the
state of activation of each of the hidden units changes. However,
because of the large number of hidden units (70 in this case),
this trajectory of hidden-unit activation cannot be directly plot-
ted. Instead, a suitable two-dimensional projection is found using
a technique known as ‘principal components analysis’ (PCA). By
rotating the original coordinate axes, PCA finds a new set of
axes which are ordered according to the amount of variance
they account for. As shown here, projecting the 70-dimensional
activation trajectory down to two principle components is suf-
ficient to visualize the basic response. Note that occurrences of
the same word in different contexts within the sentence leave
the network in different states, which in turn affect the net-
work’s response to subsequent words. (Modified from Ref. 20.)



with a variety of objects demonstrated that object width was
the primary feature used in the discrimination.

How does the dynamics of the evolved neural network
allow this agent to achieve such an accurate discrimination
with such coarse sensors? The neural circuit is a 14-dimen-
sional, non-autonomous, continuous-time dynamical system,
while the entire coupled system comprising the neural circuit,
the agent’s body and the object is a 16-dimensional, autono-

mous, hybrid dynamical system. Although it is impossible to
visualize directly such high-dimensional dynamics, carefully
chosen projections can provide important insights.

For example, we can understand how the agent’s behavior
arises from the interaction between the movement of its body,
the movement of the object, and the dynamics of the evolved
neural circuit by superimposing plots of the agent’s motion
on a depiction of the effects of the network dynamics on

B e e r  –  D y n a m i c a l  a p r o a c h e s  t o  c o g n i t i v e  s c i e n c e

95
T r e n d s  i n  C o g n i t i v e  S c i e n c e s  –  V o l .  4 ,  N o .  3 ,   M a r c h  2 0 0 0

Review

trends in Cognitive Sciences

Movement
planning

field

Movement
planning

field

Task
input

Specific
input

A B

Memory
field

A B

A B

Cooperative regime

Non-cooperative regime

* * *

* * *

A B A B A B

Fig. 2. B trial of the A-not-B task. The three main stages of a trial are illustrated at the top and corresponding plots of the state of the
various fields in the model at each stage are shown below. The plots give the level of activity of each field as a function of horizontal position
in the workspace: task input field (green), specific input field (red), memory field (dark blue) and movement planning field (light blue).
Initially, the model is exposed to repeated A trials (not shown), resulting in a memory of previous reaches to A (as indicated by the peak at
A in the left dark blue memory field plot). Then the B trial begins. First, the object (yellow star) is hidden in container B in full sight of the
infant. Second, a delay is imposed. Third, the apparatus is pushed towards the infant and the infant reaches to one of the containers to re-
trieve the object. When the resting level of the movement planning field is low (non-cooperative regime), a high initial peak at B decays
over time (asterisks) to a reach to A and the model produces the A-not-B error. When the resting level of the movement planning field is
high (cooperative regime), it is able to sustain the peak at B (asterisks) and the model produces a correct reach to B. (Modified from Ref. 30.)



that motion. Figure 3b shows the motion of a falling object
through the agent’s field of view as the agent moves back
and forth while catching circles (left) or avoiding diamonds
(right). Note how the initial states are separated into two
distinct bundles of trajectories as the interaction proceeds.
The trajectories are color-coded according to whether their
instantaneous horizontal velocity is directed towards (blue) or
away (red) from the centerline. These trajectories are super-
imposed on the steady-state horizontal velocity field, which
shows the steady-state horizontal velocity generated by the
neural circuit for an object fixed at each point in the agent’s
field of view. (These fields are color-coded in the same
manner as the trajectories.) If the interaction were frozen at
any point along a trajectory, then the instantaneous hori-
zontal velocity would approach the steady-state value over
time. However, as both the agent and the object are mov-
ing, the instantaneous velocity lags behind the steady-state
value. Note how a red avoidance behavior often persists for
some time after entering a blue, centering region, and vice
versa. This subtle interplay between sensory input and in-
ternal state is crucial to accurate discrimination. For circles,
the blue centering regions in the steady-state velocity field
repeatedly turn the trajectory bundles back towards the cen-

ter until the object becomes trapped in the central black re-
gion of no movement and is caught. On the other hand, for
diamonds the central red avoidance region is much larger and
penetrates much higher in the agent’s field of view, ulti-
mately pushing the trajectories away from the center until
the object is avoided.

Dynamical, symbolic and connectionist approaches 
to cognition
How does a dynamical approach to cognition differ from the
more familiar symbolic and connectionist approaches? It
might be argued that to distinguish dynamical approaches
from these other approaches is mistaken for any of the fol-
lowing reasons: dynamical models can be simulated on digital
computers49, dynamical models can be given a computational
description50, Turing machines can be described as discrete-
time dynamical systems over the integers51, dynamical models
can be represented as connectionist networks52, and at least
some connectionist networks are dynamical systems6. How-
ever, this is a bit like arguing that there is no difference be-
tween classical and relativistic mechanics because both are
expressed using differential equations and both can be simu-
lated on a digital computer. Clearly the important issues in
that case were which differential equations were proposed,
what theoretical entities those equations described, and, most
importantly, the fundamentally different conceptions of space,
time and the nature of the gravitational force that Newton
and Einstein offered.

Likewise, regardless of the mathematical formalism or
modeling technology employed, dynamical, symbolic and
connectionist approaches differ markedly in the theoretical
vocabulary and style of explanation that each brings to bear on
cognitive phenomena53. A typical symbolic model is expressed
as a program that takes as input a symbolic description of 
a problem to be solved. Then, using the system’s general
knowledge about the domain in which it operates (also sym-
bolically represented), this description is manipulated in a
purely syntactic fashion in order to obtain a solution to the
problem1–3. Here, the explanatory focus is on the structure
and content of the representations employed and the nature
and efficiency of the algorithms used. Typical connectionist
models, on the other hand, are expressed as layered networks
of simple, neuron-like elements that are trained to transform
a numerical input representation into a numerical output
representation4–6. In this case, the explanatory focus is on
the network architecture, the learning algorithm, and the
intermediate distributed representations that are developed.

By contrast, a typical dynamical model is expressed as a
set of differential or difference equations that describe how
the system’s state changes over time. Here, the explanatory
focus is on the structure of the space of possible trajectories
and the internal and external forces that shape the particular
trajectory that unfolds over time, rather than on the physical
nature of the underlying mechanisms that instantiate this
dynamics. On this view, inputs do not uniquely specify an
internal state that describes some external state of affairs.
Rather, they serve as a source of perturbations to the system’s
intrinsic dynamics. For example, in the A-not-B model, the
focus is on the response of the movement planning field to
the perturbation provided by the transient specific input
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Fig. 3. Dynamical analysis of an evolved model agent for catching circles and avoid-
ing diamonds. (a) The basic scenario. The agent can move back and forth horizontally while
objects fall towards it from above. It uses an array of seven sensors to sense the distance to an
object. (b) The movement of an evolved model agent for object discrimination on 24 circle
trials (left) and 24 diamond trials (right). Here x is the horizontal position of the object relative
to the agent (with zero at the center) and y is the relative vertical position (with zero at the
bottom). The trajectories are color-coded according to the instantaneous horizontal velocity,
with blue corresponding to a centering motion and red corresponding to an avoidance 
motion. The intensity of the color is proportional to the magnitude of the velocity, with black
corresponding to a velocity of zero. These trajectories are superimposed on steady-state hori-
zontal velocity fields, which show what the long-term horizontal velocity of the agent would
be if an object were fixed at each point in its field of view. The steady-state velocity fields are
color-coded in the same way as the trajectories, except that green indicates areas where the
dynamics are multistable. In these cases, the steady-state velocity adopted depends on which
basin of attraction (see Box 1) the transient trajectory finds itself within. Note that if an ob-
ject were frozen at any point along a trajectory, the color of the trajectory would approach
the color of the steady-state velocity field at that point over time.



(Fig. 2, red plots). Likewise, a system’s internal state does not
necessarily have any straightforward interpretation as a rep-
resentation of an external state of affairs. Rather, at each in-
stant in time, the internal state specifies the effects that a given
perturbation can have on the unfolding trajectory. For ex-
ample, in Elman’s model, grammatical context is manifested
by the differing effects that a word can have depending on the
state of the network when the word is encountered (Fig. 1).
The different states that result from encountering the same
word in different contexts in turn differ in their response to
subsequent words. In this way, an agent’s past experiences
influence its future interactions through its internal state,
on multiple time scales. Thus, there are real conceptual dif-
ferences between how a dynamicist, a computationalist and
a connectionist approach a cognitive agent, differences that
can have substantial empirical consequences in practice.

Although the major differences in outlook between dy-
namical, symbolic and connectionist approaches are clear
enough, there is considerable fuzziness at the borders. For ex-
ample, work with recurrent connectionist networks is clearly
dynamical to the extent that it emphasizes the unfolding tra-
jectory, rather than the nature and architecture of the under-
lying ‘neuron-like’ elements and their representational roles.
More fundamentally, there is a great deal of controversy over
exactly what a representation or a computation is. Some have
argued that, although objectivist, symbolic notions of repre-
sentation and computation might be inapplicable to dynam-
ical models, suitably distributed, analog, context-dependent
and action-oriented notions will be applicable54–57. However,
great care must be taken in generalizing these notions. If any
internal state is a representation and any systematic process is
a computation, then a computational theory of mind loses
its empirical force58. Regardless of how these debates are ul-
timately resolved, it is clear that dynamical ideas are forcing
a critical evaluation of the notions of representation and
computation within cognitive science.

Cognition and the dynamics of situated, embodied action
Although a dynamical approach can certainly stand alone, it is
most powerful and distinctive when coupled with a situated,
embodied perspective on cognition59–63. From this perspec-
tive, the principal aim of a situated agent is to take action
appropriate to its circumstances and goals, and cognition is
merely one resource among many in service of this objective.
Other important resources include the physical properties of
an agent’s body, the structure of its immediate environment
(including artifacts such as shopping lists, calendars and com-
puters, etc.) and its social context. In this sense, cognition can
extend beyond an agent’s brain to be distributed over a sys-
tem of people and objects within an environment62,63. A very
strong parallel emphasis on situated and embodied action
has also emerged in artificial intelligence and robotics64–68.

In a dynamical approach to situated action, an agent’s
nervous system, its body and its environment are viewed as
coupled dynamical systems10 (Fig. 4). Given that bodies and
nervous systems co-evolve with their environments, and only
the behavior of complete animals is subjected to selection,
the need for such a tightly coupled perspective should not
be surprising. The focus here is on continuously engaging
an environment with a body so as to stabilize appropriate

coordinated patterns of behavior, rather than the sequential
sense–think–act processing cycle that is typical of compu-
tational approaches. For example, there is a very real sense
in which the evolved model ‘nervous system’ for object dis-
crimination described above does not itself know the differ-
ence between circles and diamonds. It is only when embodied
in its particular body and situated in the environment in which
it evolved that the distinction between circles and diamonds
arises over time through the continuous interaction of these
components. Because, as noted above, the internal state of the
agent’s dynamics plays such an essential role in structuring its
behavior, this is no mere return to stimulus–response behav-
iorism. Rather, the working hypothesis of the dynamical 
approach is that, through increasingly sophisticated uses of
internal state to mediate between perception and action, more
cognitive behavior emerges from the dynamics of situated
action. Thus, by supplying a common language for cognition,
for the neurophysiological processes that support it, for non-
cognitive human behavior, and for the adaptive behavior of
simpler animals, a dynamical approach holds the promise 
of providing a unified theoretical framework for cognitive
science, as well as an understanding of the emergence of
cognition in development and evolution.

Conclusions
My primary goals in this review have been threefold. First, I
have tried to communicate a sense of the practice of dynam-
ical approaches to cognition by describing in some detail three
rather different examples. These examples also demonstrate
that dynamical approaches are beginning to engage substan-
tive empirical questions in cognitive science. Second, I have
argued that, although there may be a great deal of overlap
between the modeling technologies and mathematical for-
malisms employed by dynamical, symbolic and connectionist
approaches to cognition, there are very real differences in the
conceptual frameworks they offer. Furthermore, these theo-
retical differences can have profound empirical consequences,
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conceptualized as dynamical systems, which are in constant 
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influencing the phenomena that are considered to be cogni-
tive, the questions asked about these phenomena, the experi-
ments performed, and the ways in which the results of these
experiments are interpreted. Third, I have tried to show how,
regardless of the eventual fate of the dynamical approach as
an alternative or an adjunct to more traditional approaches,
dynamical ideas are forcing a much-needed critical evaluation
of the notions of representation and computation in cogni-
tive science. They are also contributing to a more general
broadening of cognitive science from its historically narrow
focus on disembodied, language-like reasoning to embodied,
situated action.
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Outstanding questions

• Do dynamical, connectionist or symbolic conceptions of cognition offer
the most powerful and parsimonious foundation for cognitive science, or
will a hybrid of the three approaches be necessary?

• Are the existing mathematical tools and theoretical vocabulary of
dynamical systems theory sufficient for applications in cognitive science,
or will significant extensions be required?

• What is the proper formulation of representation and computation, if
any, for situated, embodied dynamical agents?

• How will a dynamical approach to situated action fare on more
paradigmatically cognitive phenomena, such as off-line deliberative
reasoning and language understanding?
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What kinds of visual information are used by humans
to avoid or achieve a collision? This question has driven a
considerable body of research on a wide variety of topics, in-
cluding highway safety, the design of flight simulators for
training commercial airline pilots, and ballgames. 

One approach to this issue breaks the problem into two
parts: (1) how do we estimate the direction of an object’s
motion in depth; and (2) how do we estimate time to colli-
sion (TTC)? Boxes 1 and 2 describe relevant visual corre-

lates of these two quantities. Regarding the second part of
the problem, many field studies seem to have been designed
around the assumption that TTC is estimated entirely on
the basis of ‘tau’ (Box 2). Wann1 made the strong criticism
that many such field studies did not effectively test the tau
hypothesis or indeed any rival hypothesis; in effect, the tau
hypothesis was regarded as an axiom rather than an hypoth-
esis. Tresilian has recently provided a critical review of this
sub-topic2.


