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Abstract

Storage and retrieval of ordered sequences from a single, serial presentation of each 

element in the sequence is typically not explained by existing connectionist models.  

Some models finesse the issue by presenting all the elements in a sequence 

simultaneously.  Others rely on weight-changing algorithms that require multiple 

presentations of the sequence.  We present a model for short-term storage and recall of 

ordered information that relies on gated activation mechanisms.  Activation from each 

element presented serially recruits randomly connected responder nodes whose 

combined activation represents the element and its position in the sequence.  The 

sequence is later recalled by feeding activation back to the elements from the recruited 

responder nodes.  We discuss the relevance of the model to various results from 

cognitive psychology, including the facts that the length of human sequential memory is 

very limited, that for novel sequences recall is better for elements at the beginning and 

ends of sequences than for elements in the middle, and that humans have greater 

difficulty recalling the second occurrence of an element in a sequence containing a 

repeated element.

KEYWORDS: Serial order, short-term memory, neural network, Ranschburg effect.
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Introduction

Sequential memory--the ability to store and recall items in a particular order--is crucial to 

many cognitive tasks.  For example, the individual digits of a telephone number are of no 

use unless remembered in the correct order.  Information about order may be presented 

spatially (e.g. telephone numbers listed in a directory) or temporally (e.g. numbers given 

out by the directory enquiries operator).  Spatial encoding can be transformed into 

temporal encoding when the elements in the sequence are scanned serially.  Humans are 

capable of memorizing some sequences after a single serial presentation of ordered 

elements.

The question naturally arises whether there is a limit to the number of items in 

sequences that humans can easily memorize for accurate recall.  Miller (1956) 

introduced the idea of a limit to human information processing capacity which he 

described as "seven, plus or minus two" items or "chunks" of information.  Sequences 

can be stored for periods ranging from a few seconds (short-term) to many years 

(long-term).  Whereas the labels short-term and long-term apply to the temporal duration 

of memory, we use the terms primary and secondary to denote different mechanisms 

according to their precedence in memorization tasks.  We are all familiar, for example, 

with the psychological strategy of silently repeating a new telephone number to oneself in 

order to consolidate it in memory.  Clearly, however, this involves a secondary 

mechanism because one could not repeat the sequence if it had not already been 

stored in some form.  While sequential information can be stored in long term memory, 

there is psychological evidence for different mechanisms between primary and 

secondary memory.  Lee and Estes (1977) describe secondary memory as "associative
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structures representing alphanumeric characters or familiar sequences of characters" 

while primary memory "is limited to information that such previously established units 

were activated in a particular context."  They describe short-term memory as a mixture of 

the processes of primary and secondary memory, and devise experiments to separate 

the two processes observationally (see discussion below).  They attribute long term 

memory almost wholly to secondary memory processes.

In this paper we are interested only in providing a model of primary sequential 

memory.  The input specification for primary sequential memory is a single presentation 

of a temporally ordered sequence of elements.  The output specification is the recall of 

those elements in the order of presentation.  Between input and output, any model of 

primary sequential memory must provide some way of representing all the elements of 

the sequence simultaneously, without losing the sequential information that is inherent in 

the temporal ordering of the input.

From an engineering point of view, to provide accurate sequential memory is a 

trivial task.  A very simple model can be implemented using an array and inserting 

elements in the sequence (or memory pointers to those elements) into consecutive 

locations in the array.  Each array position constitutes a special register for the 

corresponding item in the sequence to be memorized.  Simple text editing programs 

using such a scheme can store and recall millions of characters with perfect fidelity.  From 

a cognitive perspective, the story cannot be quite so simple.  First, it is hard to see why 

human sequential memory should be limited to so few elements if the brain uses special 

registers.  Second, human sequential memory is prone to systematic recall errors 

(discussed below) that are not easily explained by the special register model.
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From a neurocomputing perspective, the challenge is even greater.  In some 

models the problem of serial input is finessed by mapping the temporal dimension onto 

special input nodes for each position in the sequence.  This is approach taken, for 

example, by Sejnowksi & Rosenberg (1986) with the NETtalk model for learning the 

correct pronunciation of syllables in context by backward error propagation.  NETtalk 

learns to pronounce the fourth syllable in a sequence of seven, all of which are given 

simultaneously as input to the network.  Reading a text is simulated by moving the seven 

syllable "window" through the text.  Clearly, this neural net equivalent of the special 

registers model relies on a prior capacity to represent a temporal sequence spatially and 

it therefore provides no explanation of primary sequential memory.  Hopfield (1982) 

considers the use of metastable states in a Hopfield net to represent sequences, but 

comments that "sequences longer than four states proved impossible to generate, and 

even these were not faithfully followed."  Other connectionist models, such as the 

recurrent backpropagation models of Elman (1988) and Servan-Schreiber et al. (1989), 

do learn and store temporally coded sequential information.  These models all, however, 

store their sequential information by employing time-intensive methods for modifying 

connection weights that require multiple presentations of the sequence to be learned.  

Thus even if such models can account for some aspects of sequential memory, they 

cannot account for the primary mechanism that must work given just a single 

presentation of the sequence.

A number of connectionist models have addressed reasoning on the time-scale of 

short-term, primary memory.  Such models have been built to approach the problems of 

short-term reasoning with pre-existing semantic knowledge and rules (e.g. Touretzky &
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Hinton 1989; Shastri & Ajjanagadde 1994; Lange & Dyer 1989).  However, the problem of 

remembering short-term information that has some form of pre-existing connections 

(such as long-term rules) is quite distinct from the problem of remembering arbitrary, 

non-related sequences.  None of these models, have therefore attempted to temporarily 

store and retrieve order information for novel sequences.

Estes (1972) proposed a psychological model of short-term ordered recall with a 

connectionist flavor.  Estes’ model proposed that memory of sequence involves 

"activated excitation flows to all elements in the sequence".  He also proposed that proper 

sequential output is controlled by inhibitory connections between items.  Subsequent 

research by psychologists has expanded on Estes’ basic idea, attempting to explain recall 

phenomena in terms of inhibition and excitation (see e.g. Lee & Estes 1977; Bjork & 

Healy 1974; and Bjork 1988).  However, none of these psychological models have been 

detailed enough to be actually implemented as a neural network.

Our research has led to a connectionist model of short-term sequential memory 

that uses only activation changes to temporarily store and recall the exact order of any 

novel short sequence of previously defined concepts.  While neural activation has been 

proposed by psychologists as the mechanism for primary sequential memory our model 

is the first, to our knowledge, that is sufficiently detailed for implementation and testing.

A Model of Primary Sequential Memory

Our model for primary sequential memory consists of three areas of nodes that we have 

labeled Semantic Memory, Responder Groups, and  Sequence Clusters. Figure 1 shows 

a small, simplified example of their basic connectivity.
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Place Figure 1 here

The semantic memory consists of a relatively small number of nodes used to represent 

previously known concepts.  Activation of semantic memory provides the "chunks" of 

information to be stored and recalled.  For simplicity, we implemented the semantic 

memory as a localist winner-take-all network, with a separate node for each concept, 

although there is nothing in principle to prevent the sequential memory working with 

distributed representations in semantic memory.

Each node in semantic memory is randomly connected to a subset of the nodes in 

the responder group network.  The responder groups serve to temporarily store both the 

identity of the items presented to semantic memory and their ordering information.  They 

consist of hundreds or thousands of groups of nodes.  The precise number does not 

matter although the general range affects the length of sequences that can be reliably 

stored.  For ease of presentation, Figure 1 shows just ten responder groups and two of 

their nodes.  The bottom nodes of the responder groups are randomly connected to a 

subset of the nodes in semantic memory.  They serve simply as input nodes to directly 

pass an excitatory signal to the upper member of the responder group unless inhibited.  

The upper responder nodes have a random threshold (set within a predetermined range).  

When this threshold is exceeded for a given responder group, that responder group is 

said to have been "recruited" to partially represent that item in the sequence.  The 

inhibitory connection to the bottom input responder then shuts off any further input from 

future elements in the sequence.

 Storing the Sequence: An ordered sequence is presented to the model for
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storage by activating, in turn, each of the nodes in semantic memory representing that 

element in the sequence.  The sequence cluster nodes will be ignored in this early 

discussion. When a given semantic element in the sequence is activated, activation 

propagates from it to the responder groups that are connected to it.  This new activation 

causes a subset of those responder groups to go over threshold and be recruited to 

represent that element and its position in the sequence.  They stay activated (through a 

self connection not shown) to continue representing that element, but the inhibitory 

connections to their input nodes remove them from pool of responder groups that can 

potentially respond to the next items in the sequence.  Responder units that receive 

activation but do not go over threshold retain their activation, thus making them more 

likely to go over threshold and be recruited for subsequent elements.  The crucial aspect 

of the model that allows sequence ordering information to be retained is that with 

relatively low thresholds, elements earliest in the sequence generally recruit more 

responder groups than later elements.  As each element in the sequence is presented, 

the pool of unrecruited responders that can potentially represent a new element 

becomes smaller -- allowing the numbers of responders recruited for each subsequent 

element to implicitly hold their ordering information.

Place Figure 2a here

Figures 2a-c walk through an example of this process for a sequence of three 

elements (D - A - C). To start the sequence, semantic memory node D is clamped to an 

activation of 1 (Figure 2a), with all other semantic memory nodes having activation 0.  

Activation spreads from D to each of its potential responders through the responders’ 

input nodes (bottom layer of the responder groups).  Responder 1’s activation is now 1,
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but its threshold is 1.4, so it does not fire.  The same is true with Responder 5, whose 

threshold is 1.5.  Responders 4, 8, and 10, however, have thresholds under 1, and so do 

fire.  These responders have been recruited to represent the fact that D was the first 

element in the sequence, with the inhibitory link to their input nodes shutting them off 

from further input.

Place Figure 2b here

Node D is then shut off, and the second node in the sequence, A, is clamped to an 

activation of 1 and its activation propagated to its responder groups (Figure 2b).  

Responder 1, which had an activation of 1 before (from D), now gets enough activation (2 

overall) to fire, and is recruited by A.  Responder 3 is likewise recruited by A, with 

Responder 7 gaining activation but not firing.  A has no effect on Responders 4 and 10, 

however, since they have shut themselves off from further input after having been 

recruited by D.  Finally, the third node in the sequence, C, is clamped, and activation 

spread (Figure 2c).  C is only able to recruit one responder group, Responder 9.

Place Figure 2c here

A total of six of the responder groups in Figure 2c were recruited during 

presentation of sequence D - A - C.  The order of the elements in the sequence is 

implicitly represented by the activation of the responder groups, since three of the 

responders were recruited by D, two were recruited by A, and one was recruited by C.  

This ordering information of the network will also occur with other sequences that are 

presented.  For example, if the sequence presented had instead been A - C - D, there 

would have been (a different) three responders recruited for A (3, 4, and 10), two for C (8 

and 9), and one for D (1).  As long as the thresholds of the responder groups are
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randomly set within a certain range, the number of recruited responders for each element 

will generally vary with its position in the sequence -- the first element in the sequence will 

nearly always recruit the most responder groups, the second element the next most, and 

so on, as the pool of eligible responder groups becomes smaller for each element in the 

sequence.  This ordering becomes increasingly likely with larger responder group 

networks.

Retrieving the Sequence:The simplest scheme for recalling a sequence that has 

been presented to the network would be to simply feed activation back from the 

responder groups to the nodes in semantic memory.  Though some of the responder 

groups recruited for a given element in the sequence will feed back into other elements 

(because of the random connectivity of Figure 1), only the semantic node for that actual 

element will get feedback from all of its recruited groups.  Since the responder groups 

implicitly encode the sequence’s ordering information through a decreasing number of 

recruited responder groups, the first element in the sequence should win the 

winner-take-all competition, because its connections from all of its recruited responder 

groups (the largest group of recruited responders) will generally cause it to get the most 

activation.

Unfortunately, such a simple scheme will all too often fail, especially on sequences 

with repeated elements.  If the sequence F - G - G is presented, for example, and F 

recruits 30 responders, the first G recruits 20, and the second G recruits 15, then the total 

number of responders feeding back into G will be 35, causing it to be recalled first.

 To handle these kind of retrieval problems, the model has a network of Sequence 

Clusters, each of which is randomly connected to a subset of the responder groups



10 

(Figure 1).  The sequence clusters serve to collect large portions of the otherwise 

unorganized responder groups into separate clusters of responders representing each 

individual element of the sequence.  One sequence cluster (whichever happens to best 

group the recruited responders) becomes activated for each element of the sequence, 

allowing the responders recruited for each element to be differentiated between, therefore 

stopping problems such as the combined effect of the two G’s in the F - G - G example 

listed above.

Selection of sequence clusters works basically as follows.  After a new element of 

the sequence is presented to the network and has caused a subset of responder groups 

to be recruited, the newly fired responder groups drives a winner-take-all competition 

between the sequence clusters.  The sequence clusters are connected in a 

dynamically-adapative winner-take-all network (Lange 1992) that allows a single winning 

sequence cluster to win no matter how many or few active inputs (responder groups) the 

winner has.  The cluster that best represents the space of newly recruited responder 

groups (because it happens to have connections to more of the responder groups than 

any other cluster) will win the competition and cluster those responders into a group 

separate from the responders recruited by previous and future elements in the sequence.

Figure 3 shows an example of this after presentation of element D in the network 

of Figure 2a.  Sequence cluster 3 happens to have more connections (two, to responders 

8 and 10) to the three responder groups recruited for D than do the other sequence 

clusters.  It will therefore win the competition to cluster the responders of this element, 

grouping two out of its three responders into an identifiable cluster.  The winning 

sequence cluster will stay activated for later sequence recall, but will remove itself from
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the competitions for subsequent elements of the sequence (through inhibitory 

connections not shown).  This process repeats for each element in the sequence.

Place Figure 3 here

At the end of the presentation of the sequence, there will be one sequence cluster active 

for each element in the sequence.  Because the first element recruited more responder 

groups than any of the later elements, the cluster representing the first will generally (but 

not always) have input from the largest number of active responders.  Similarly, the 

second cluster will have more active inputs than the third, and so on.  An example run, 

implemented in the  DESCARTES connectionist simulator (Lange 1990), is shown in 

Figure 4.

Place Figure 4 here

On recall, the active clusters will compete, and the cluster for the first element will 

win because of its greater number of responder groups (22 in Figure 3).  This cluster will 

then feed its activation back to its responder groups and through them down to the 

semantic memory  causing the first element in the sequence (R) to get the most 

activation and be recalled. 

Place Figure 5 here

A simple example for the sequence D - A - C is shown in Figure 5.  In Figure 5, the 

sequence clusters representing A (cluster 1) and C (cluster 4) are in the middle of 

competion with the cluster for D (cluster 3).  Sequence cluster 3 is winning the 

competition because more responder groups feed into it (groups 8 and 10) than feed into 

the other sequence clusters.  Activation then feeds back from it through its clustered 

responder groups (through a responder output node not shown) into the semantic
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memory.  In Figure 5, responders 8 and 10 feed back into all of the semantic memory 

nodes they could potentially respond to.  Here, group 8 can respond to C or D and group 

10 can respond to A or D.  Multiple elements of semantic memory therefore receive 

feedback from the responders grouped by the winning sequence cluster.  However, one 

of the elements, and almost certainly only one of them (D in Figure 5), will receive 

feedback from all of the winning cluster’s responders, and will therefore win the 

competition for retrieval as the first element.

The first cluster then removes itself from the competition (through additional nodes 

and gating not shown), allowing the cluster representing the second element in the 

sequence to win and recall the second element.  The rest of the sequence is recalled in 

the same way.  The complete sequence can be recalled repeatedly, until a new sequence 

is stored or all of the activation in the responder groups decays away.

Network Dynamics:  Figure 3 shows only a simplified version of the full network.  

The full network includes additional nodes and connections to tell the network when to 

start memorization and retrieval and to control the dynamics of the storage and retrieval 

processes.

There are three "control" nodes that are used to start the memorization and 

retrieval processes:  a Memorize node, a Start-Retrieval node, and a Next-Element 

node.  Initially the network starts with no activation on any of its nodes.  To start 

memorizing a new sequence, the initial semantic memory element of the sequence (e.g. 

"D") is clamped to an activation of 1.  The Memorize node is then given an activation of 1 

for one cycle.  The Memorize node has a multiplicative connection to all of the responder 

groups’ input nodes, allowing activation to pass from semantic memory to the responder
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groups and starting the storage process as described previously.  After the network 

settles (i.e. responder groups recruited and a single sequence cluster selected to group 

them), the next element in the sequence is clamped to 1 and the Memorize node 

activated again to start the storage process again.  The Start-Retrieval node is activated 

for a single cycle when retrieval of the sequence is desired.  After the first element has 

been retrieved during subsequent settling of the network, the Next-Element node is 

activated for a single cycle to start competition for retrieval of the next element.  

Next-Element is then activated to start retrieval of each subsequent element, until there 

are no more.

Each responder group actually has three nodes:  the input and upper responder 

nodes shown in Figures 1-3, and a responder output node as mentioned above.  As 

described earlier, the responder input nodes (lower responder nodes in the figures) 

receive input from a subset of the semantic memory elements, and propagates it on to 

the main (upper) responder node when the Memorize signal has been received.  The 

main responder node has an outgoing connection to the competion nodes of all of the 

sequence clusters that can possibly group it (e.g. responder 10 is connected to sequence 

clusters 2 and 3 in Figure 1).  The responder output node, in turn, has a connection back 

from the competition nodes of all of those sequence clusters.  It has outgoing connections 

to all of the semantic memory elements its responder input responds to.  The responder 

output node therefore serves as the conduit to feed activation back from the retrieval 

competion of the sequence clusters to the semantic elements that will be retrieved.

The sequence clusters are slightly more complicated.  An exact description of their 

connectivity is not important for the purposes of this paper, but we will describe their
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nodes and functions briefly.  Each sequence cluster also has three nodes.  The 

competition node matching those of Figure 3 and 5 receives activation from the main 

responder nodes of its random subset of responder groups and sends activation to their 

responder output nodes.  The competition nodes of all of the sequence clusters are 

connected within a dynamically-adapative winner-take-all network (Lange, 1992) to allow 

a single winner grouping the most responders to be selected on storage and retrieval, as 

described above.  Each sequence cluster also has a "storage" node that becomes 

activated (and stays activated) when a cluster has won the competition to represent a 

single element of the sequence.  When it is active, the storage node inhibits its 

competition node, allowing other sequence clusters to compete to represent the next 

elements in the sequence.  The third node of each sequence cluster is a  "still competing" 

node that is activated when the Start-Retrieval signal is received, but which is inhibited 

(turned off) for the winning cluster when the Next-Element signal is received.  Because 

the "still competing" node’s activation is required for the competition, this allows the 

sequence clusters of the next elements to be retrieved.

Finally, it is important to note that the connections between the responder groups 

and their sequence clusters are gated (through inhibitory links not shown) in a special 

way.  As shown in Figure 5, connections from active sequence clusters to responders that 

they did not actually cluster and from active responders to inactive sequence clusters 

become gated closed and do not propagate activation (dashed lines).  This allows the 

sequence clusters to differentiate between the responders that they actually clustered for 

their element and responders that became activated from later (or earlier) sequence 

elements (e.g. responder 3 for sequence cluster 3 in Figure 5).  If such false connections
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are not closed, then both the ordering information implicit in the size of the sequence 

clusters and the element implicitly represented by the clustered responder group can 

become lost.  Because activation only flows between groups of responders and the 

sequencers that actually clustered them, ordering information is preserved (since the 

relative number of responders recruited for each element in the sequence is preserved), 

as is the element each sequence cluster represents (since only responders recruited for 

that element will actually get feedback from the sequence cluster).

Discussion

We have presented a connectionist model that is able to temporarily store and recall 

ordered information of any novel short sequence of items presented one at a time.  The 

model performs this solely by the spread of activation, which recruits randomly connected 

nodes to represent each element and its position in the sequence.  A temporally 

presented sequence is therefore represented by a spatially distributed pattern of 

activation.  Any given responder group may represent different elements in different 

positions in different sequences, thus there is no sense in which our model contains 

special registers for elements or positions.

 Although a considerable amount is known about the neural mechanisms of many 

aspects of memory, unfortunately little is known about the neural mechanisms specifically 

underlying primary sequential memory (possibly because the apparent triviality of the 

task has caused it to be ignored).  While the types of nodes and connections in our model 

are comparable to many other attempts to model neural systems, it would not be 

reasonable to make any strong claims about correspondences between the model we
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have proposed and biological nervous systems, especially at the level of overall structure.  

One intriguing aspect of our model, however, is the way in which randomly connected 

layers can be used to represent ordered information.  Until the relevant neurological work 

is done, there is no way to know whether layers such as these play any role in sequential 

memory in biological systems.

Although we are still investigating the properties of the model, it has several 

features that are very interesting from a cognitive perspective:

The "magical" number seven:  Miller (1956) described research indicating that human 

ability to memorize a sequence of items is dependent on the way in which those items 

are "chunked".  If one naively attempts to memorize a sequence of ones and zeros, the 

rough guide of seven ones or zeros holds.  But if one mentally converts binary numbers 

into octal or hexadecimal (i.e. chunking them into groups of three or four) it is possible, 

with practice, to become proficient at scanning and then reproducing sequences of ones 

and zeros three or four times longer than without chunking.  Using different chunking 

strategies it is possible to markedly extend the length of sequences that can be 

accurately recalled.  It does not seem possible to markedly increase the number of 

chunks that can be memorized, although where order of recall is not important, it is 

possible to recall more items (Bjork 1988).

Why is human primary sequential memory limited to so few chunks?  Our model 

provides a plausible explanation.  Because of the way responder groups are recruited by 

items in semantic memory, the number of responder groups needed to reliably store 

sequences grows exponentially with the length of the sequence.  Each input event
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causes roughly the same fraction of unrecruited responder groups to go over threshold 

and hence be recruited.  Let p(0 < p < 1) be that fraction.  Letting N be the number of 

responder groups, and assuming no decay of activation, the jth element in the sequence 

will recruit approximately N.p.(1-p)  j-1  responder groups.

Accurate recall of a sequence requires that the difference between the number of 

responder groups recruited by the jth and kth elements must meet or exceed some 

threshold, d (≥1).  That is, unless

N.p.(1 - p)  j-1  - N.p.(1 - p)  k-1 ≥ d

the jth element will not reliably be recalled before the kth element.  In the crucial case 

where the jth and kth elements are consecutive, i.e. k = j+1, this condition can be rewritten 

as

N.p.(1 - p)  j-1  - N.p.(1 - p)  j  ≥ d

which can be transformed into

N ≥ d.(1 - p)1-j  / p 2

and from which it can easily be seen that N grows exponentially with respect to j if we 

consider that 1-p = 1/c for some c > 1, and hence that the inequality is equivalent to

N ≥ d.c  j-1  / p 2.

The exponential cost of increasing memory capacity associated with our model 

distinguishes it from conventional network models where capacity is usually linearly 

related to network size.  For instance, Hopfield (1982) estimates the storage capacity of a 

Hopfield net to be approximately 15% of the number of nodes.  This agrees with the 

range of 10-20% established for other types of network (Anderson & Rosenfeld 1988). 
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However, as commented previously, such networks are not well suited to the task of 

primary sequential memory.  Alternative schemes for representing sequential information 

spatially seem inevitably to depend on special registers.  Assuming a linear cost for 

adding more registers, and the obvious advantage of being able to memorize longer 

sequences, it is natural to wonder why there is not more variation in capacity between 

individuals and why the capacity for memorizing very long sequences from a single 

presentation has not evolved.

Exponential growth places a severe biological cost on the evolution of the capacity 

for storing longer sequences.  Furthermore, the random nature of the connections 

between semantic memory and responder groups and between responder groups and 

sequence clusters means that this estimate of N represents an ideal that is not generally 

achieved in practice.  Because, however, the responder groups are capable of 

representing any sequence of events in semantic memory our model is capable of 

exploiting whatever chunking strategies are available to the semantic memory.

The Ranschburg Effect:  Human subjects who are given the task of recalling elements in 

a serially presented sequence are less accurate at recalling repeated elements.  This 

phenomenon is known as the Ranschburg Effect (Jahnke 1969).  Our model displays a 

similar propensity, although the correspondence between our model and the 

psychological data is not exact.

A possible reason for this is that some parameters of the model should be 

adjusted.  We are presently investigating the effects of manipulating the percentage of 

semantic nodes connected to each responder group, the range of the responder group
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thresholds, and activation decay rates in responder groups, and we hope that by 

manipulating these parameters we can find a more precise model for the Ranschburg 

Effect.  Another reason for the discrepancy between the model and the psychological 

data is the enormous difficulty of separating primary mechanisms from secondary 

mechanisms in human subjects.  A technique commonly used is to present each item in 

the sequence for a fraction of a second and at the end of the sequence to give subjects a 

"distractor task" to try to prevent any attempts to mentally go over the sequence.  Although 

such distractor tasks have a significant effect on recall performance, there is, of course, 

no guarantee that they are completely effective in blocking secondary memory 

mechanisms.  Indeed, Hinrichs et al. (1973) concluded that the psychological data for the 

Ranschburg effect was due the interaction of two factors, the failure to detect repetitions 

(see also Kanwisher 1987) and "inappropriate guessing strategies."

U-shaped recall:  A significant difference between our model and the performance of 

human subjects is that human subjects are typically least accurate about elements in the 

middle of sequences (Jahnke 1969), whereas the model described above is least 

accurate on elements at the end of a sequence (because of the relatively small number 

of responder groups that remain to be recruited).  This feature of our model is, however, 

under the control of the parameter determining activation decay in responder groups.  

The results described in this paper assumed no activation decay.  (The model was simply 

wiped clean at the beginning of each new sequence.)  However, by setting a decay factor, 

it is possible to change the recall performance.  To see how this works, consider a set of 

responder groups that have been recruited by the first element in a sequence.  As
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activation levels in those groups decay, some of them will drop below threshold and can 

be recruited by subsequent elements in the sequence.  If the decay rate is very high, then 

only later elements in the sequence will have recruited responder groups that are still 

active during the recall phase.  In other words, the beginning of the sequence will have 

been forgotten.  If the decay rate is intermediate, then some of the initially recruited 

responder groups will be recruited by later elements in the sequence.  This can have the 

effect of raising the number of groups recruited by elements at the end of the sequence 

above those in the middle of the sequence, while keeping it below the number recruited 

by elements at the beginning of the sequence.  Similar effects can be achieved by 

altering the range of thresholds for responder group nodes--because higher thresholds 

may delay recruitment--or by slowing the relative presentation rate of the 

sequence--because responder groups recruited early in the sequence may become 

active again before the end of the sequence.

We are currently experimenting with the model to try to find a reasonable 

approximation to the data from the psychological experiments, by varying these 

parameters.  As before, however, it is not clear that our model can be expected to exactly 

reproduce those results because of questions about the dependence of those results on 

primary memory alone.  This is especially acute when rate of presentation is the variable 

because slow rates of presentation may allow secondary mechanisms to play a more 

significant role.

Conclusion

Modelling short-term sequential memory is an important task that has thus far been
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overlooked by connectionist researchers.  Besides being a first pass at a model of human 

short-term sequential memory, our model is a step towards a connectionist model of the 

short-term buffer that is necessary to hold sequential training data for long-term 

backpropagation models  and thus eliminating one of their remaining symbolic crutches.  

Further collaboration between cognitive psychologists, neuropsychologists and computer 

scientists will be needed to improve the biological and psychological relevance of the 

mechanisms proposed.
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Figure Captions

Figure 1: A miniature version of the model with four Semantic Memory nodes (A-D), ten 

Responder Groups (1-10), and three Sequence Cluster nodes (1-3), showing random 

connections between units in Semantic Memory and Responder Groups (50% chance of 

connection), and between Sequence Clusters and Responder Groups (30% chance of 

connection).  Links with dark triangles are inhibitory, while links with white triangles or no 

triangles are excitatory.  The number in the upper node of each Responder Group pair 

represents a threshold randomly chosen between 0 and 2.  For simplicity, all excitatory 

connections are of unit weight.

Figure 2a: Activation of Responder Groups after D is activated as the first element of the 

sequence.  A unit signal is passed along all the lines from semantic memory node D to 

Responder Groups.  If the threshold on the upper node of the Responder Group was less 

than 1.0, then the group is recruited and sends an output of 1.0 (shown by shaded 

rectangle).  If the threshold is greater than 1.0 then the unit activation is stored by the 

upper node (shaded circles).

Figure 2b: Activation of Responder Groups after A has been activated as the second 

element of the sequence.  The Responder Groups in the shaded rectangles have been 

recruited by the semantic node indicated by the letter in the top left corners.  In this
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example, group 1’s upper node has a total activation of 2.0 (from the combination of the 

earlier stored activation from D and the present activation from A), which is greater than 

its threshold (1.4), and so is recruited to represent A.

Figure 2c:  Activation of Responder Groups after C has been activated as the third 

element of the sequence.

Figure 3: Simplified version of Sequence Cluster nodes arranged in a winner-take-all 

network and randomly connected to responder groups. Figure shows the activation of the 

sequence clusters during competition after presentation of D (see Figure 2a).  Here, 

Sequence Cluster 3 has the most inputs from D’s recruited Responder Groups, and so 

will win the winner-take-all competition and serve to cluster those responders.

Figure 4: Responder Groups and Sequence Clusters activated when the sequence R - B 

- F - Q - B-R  was presented to a network where each semantic element was randomly 

connected to 100 of the 200 total responder groups.  The network had 50 sequence 

clusters, each of which had random connections to 100 of the responder groups.  The 

first column shows the element presented, the second column shows the number of 

responder groups recruited by that element, the third column shows which sequence 

cluster won to represent that element, and the fourth column shows how many of the 

responders that cluster actually represents.
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Figure 5: Simplified version of the network of Figure 2c and 3 during retrieval of the first 

element.  Dashed lines show connections gated closed that do not spread activation for 

this retrieval (see section on Network Dynamics).  Here, Sequence Cluster 3 

(representing D) has active connections to more clustered Responder Groups than do 

the other competing sequence clusters (1 and 4), and so will win the competition.  

Already feedback from it through its clustered responder groups (8 and 10) is causing its 

element in the semantic network (D) to start to win for retrieval of the sequence’s first 

element.
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