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Introduction 

 

“The fundamental problem of communication is that of reproducing at one point either exactly or 
approximately a message selected at another point. Frequently the messages have meaning; that is 
they refer to or are correlated according to some system with certain physical or conceptual entities. 
These semantic aspects of communication are irrelevant to the engineering problem. The significant 
aspect is that the actual message is one selected from a set of possible messages. The system must 
be designed to operate for each possible selection, not just the one which will actually be chosen 
since this is unknown at the time of design.” 

 
C. E. Shannon, (1948), “A Mathematical Theory of Communication” p.31  

 
 
“the hard core of information theory is, essentially, a branch of mathematics, a strictly deductive 
system. A thorough understanding of the mathematical foundation and its communication 
application is surely a prerequisite to other applications. I personally believe that many of the 
concepts of information theory will prove useful in these other fields-and, indeed, some results are 
already quite promising-but the establishing of such applications is not a trivial matter of translating 
words to a new domain, but rather the slow tedious process of hypothesis and experimental 
verification. If, for example, the human being acts in some situations like an ideal decoder, this is 
an experimental and not a mathematical fact, and as such must be tested under a wide variety of 
experimental situations. ” 

 

C. E. Shannon, (1956) “The Bandwagon”p3 
 

 

How is it that human beings are able to communicate meaning through the medium of language? 

Why, as you read these typed words, do you form thoughts that approximate the ones I envisaged 

you having as I sat on my couch typing them? What, precisely, goes on as we communicate with 

words, and what makes it possible?  

 



In what follows, I will briefly describe what I will term the “standard” conceptual model of 

linguistic communication, and detail several more or less well known shortcomings from which 

it suffers. I will suggest that these can be distilled down to a single essential point: that the 

standard model is non-computational, in that it involves making assumptions that violate some 

very basic computational and mathematical principles of coding.  Accordingly, I will suggest 

that if we are to assume that our minds are best understood computationally (and I will describe 

some of the reasons why I believe that this is so), it follows that there must be a more profitable 

way of conceiving of language than the standard model.   

 

I will then describe an alternative model of human communication grounded in formal theories 

of information and learning, and describe some of the evidence that supports this alternative 

model. I will argue that the alternative model of language I present not only offers a far more 

profitable and productive avenue for the scientific study of language, but also that it may have 

benefits for the users of language as well, because improving our understanding of the ways and 

means of the practices of human communication can allow those practices to be refined and 

improved on. 

 

 

What is language? The traditional answer 

Traditionally language has been seen as a system for communication that comprises a taxonomy 

of signs and meanings, and a code for combining simple signs into complex signs. Although 

signs can be composed of sounds, gestures, letters or symbols (or even smaller sub-symbols) 

depending on whether the language is spoken, signed or written, the assumption that unifies 

traditional approaches to language is that a relatively fixed vocabulary of signs can be combined 

into larger complex signs such as words and phrases by the use of rules. These rules are often 

thought of as comprising the syntax, or grammar, of a language, while the meanings that are 

connected to individual signs, words and phrases are called it semantics. 

  

For the present purposes, the most important conceptions that the standard model embraces are 

the idea that words refer in specific ways to their meanings (and, often, things in the world), that 

their meanings can be combined, and that when a sign is used in communication, ands that 



meaning can be encoded and transmitted by a sender through a channel to a receiver who 

decodes it (a signal). That is, on the standard model, it is assumed (albeit often implicitly) that 

the information in the transmission channel (be it spoken, signed or written) is sufficient for the 

meaning of a message to be decoded from it. 

 

Computationally, in order for meaning to be encoded into and decoded from a given token of a 

sign, type/token relationships for classed of signs to be defined. Defining what constitutes an X 

or a Y enables individual X’s and Y’s to be bound to the appropriate part of a structure such as 

“if X then Y,” allowing the structure to describe a relationship in the world, and for the meaning 

of X and Y to be decoded from a message in which they are mentioned. If the definitions of 

classes are themselves signs, this in turn imposes a requirement that any signs in the definitions 

be defined as well (i.e., if the definition of X is “all X’s have Z,” one needs to define Z).  

 

The computational problem this approach runs into is that the “Russian Doll’ strategy of defining 

signs in terms of further signs is inherently regressive. The sign “dog,” is a token of the type 

“noun,” just as “spaniel” is a token of “dog,” and “Fido” is a token of “spaniel.” In order to 

explain (or generalize) the relationships between “Fido,” “dog” and “spaniel,” it is not sufficient 

to say, “Fido is a spaniel” and “A spaniel is a dog.” One must say why Fido is a spaniel, and why 

spaniels are dogs (as opposed to anything else). Similarly, saying, “a sentence is grammatical if it 

is syntactically correct,” explains little unless one defines which things in the world that are and 

are not members of the classes “sentence,” “grammatical” and  “syntactically correct.” 

 

Further, if signs are conceived of as being “compositional”—such that complex signs such as 

sentences in natural language have meanings that are determined both the structure of sentence 

and the specific meanings of the signs out of which they are composed (see e.g., Fodor, 1998)—

one needs an account of how one can somehow extract the relevant individual tokens of meaning 

from descriptions that only mention types; for example, one needs to be able to say which 

aspects of the meanings of “cat” “sat” and “mat” are relevant to the meaning of “the cat sat on 

the mat.” 

 



Neither desideratum is satisfied by any existing approach to semantics (Fodor, 1998; Murphy, 

2002). Indeed, there are good reasons to believe that they cannot be satisfied: the kinds of things 

that people represent and think about symbolically do not fall into discrete classes of X’s, Y’s or 

Z’s. Symbolic categories do not possess discrete boundaries (i.e., there are no fixed criteria for 

establishing whether an entity is an X or a Y) and entities are often assigned to multiple symbolic 

classes (i.e., they are sometimes X’s; sometimes Ys). As a result of these and many other factors, 

symbolic type/token relationships appear to be inherently underdetermined (see e.g., 

Wittgenstein, 1953; Quine, 1960; Fodor, 1998). This is a serious problem for all current 

symbolic approaches (Fodor, 1998), and has prompted theorists to conclude that while there must 

be a solution, it is innate and largely inscrutable (Fodor, 1983; 1998; Chomsky, 2000): 

 

“acquisition of lexical items poses Plato's problem in a very sharp form. As anyone who has tried 

to construct a dictionary or to work in descriptive semantics is aware, it is a very difficult matter 

to describe the meaning of a word, and such meanings have great intricacy, and involve the most 

remarkable assumptions, even in the case of very simple concepts, such as what counts as a 

possible "thing." At peak periods of language of language acquisition, children are "learning" 

many words a day, meaning that they are in effect learning words on a single exposure. This can 

only mean that the concepts are already available, with all or much of their intricacy and structure 

predetermined, and the child's task is to assign labels to concepts, as might be done with very 

simple evidence.”  
Chomsky (1997 p. 28-29) 

 

Many of these problems arise because signs are traditionally conceived of in referential terms 

(Ramscar, Yarlett, Dye, Denny & Thorpe, 2010). The standard theory assumes that signs both 

represent and point to meanings, so that signs and their meanings share a bi-directional 

relationship (which allows for the encoding and decoding of meaning).  Signs are seen as 

abstract representations that either exemplify (stand for) or refer (point) to their meanings 

(referents). These meanings can in turn be defined by reference to things in the world—that is, 

signs can be defined by reference to objects and events they refer to.  So, for example, the sign 

“dog” may be defined by reference to a class of things in the world, dogs.  The problems with 

this approach are largely the same as for type/token definitions, and have been laid out 

exhaustively (see e.g., Wittgenstein, 1953; Quine, 1960; Fodor, 1998; Murphy, 2002).  



 

The assumption that signs and meanings enjoy a bi-directional relationship is at odds with the 

idea that symbols are abstract representations, because abstraction is not a bi-directional process. 

Abstraction involves reducing the information content of a representation, such that only 

information relevant to a particular purpose is retained (Hume, 1740; Rosch, 1978). In Shannon’s 

terms, abstraction is not lossless, and as such, cannot be a bi-directional process: one can abstract 

from a larger body of information to an abstract representation of it (such as reading an article 

and summarizing it in an abstract), but one cannot reverse the process. The idea of “reverse 

abstraction” makes little computational sense because information discarded as part of the 

process of abstraction cannot be recovered from the abstraction (just as one cannot get the 

detailed methods and analysis sections from the abstract of a research article that one has never 

seen; see Ramscar, et al 2010).  

 

Thus, in terms of the semantics of signs, the standard model comes with two large problems. 

First, the taxonomy of signs and meanings it presupposes must somehow be inductively gotten 

from the evidence facing a learner or theorist (or, if we are to adopt a nativist approach, one must 

explain how every possible concept a child might need to lexicalize has come to be encoded in 

the genome), and second, even allowing for that, one must explain how one can get the meaning 

of a sign from a token that abstractly “represents” that meaning. 

 

Finally, of course, as is well known, even ignoring the problem of decoding the semantics of 

signs, the induction of the rules that are supposed to combine simple signs into complex signs in 

the standard model (i.e., syntax) also poses problems for the learner and the theorist. As far as 

the learner goes, many theorists have argued that the task of learning the rules is impossible, and 

that some knowledge of linguistic structure must be innate. 

 

To summarize then, the standard model of language has led theorists to suppose not only that 

children are born with knowledge of every possible lexical concept that they might ever learn, 

but also knowledge of the syntax by which these concepts will be combined (Fodor, 2000; 

Chomsky, 2000). Indeed, Yang (2006) suggests that children are born knowing the grammar of 

every possible language, and that they face the task of unlearning all but the correct one. It is 



worth noting at this point that the difficulties that accounting for the semantics of statements 

relating to counterfactuals1 in the standard model has led philosophers to argue that all and every 

possible world must exist (Lewis, 1986). While it seems that no-one has actually proposed that 

children are born with innate knowledge of every possible world as well as every possible 

meaning (yet, at least), this may be that no one has yet thought to explain how children ever 

come to understand the semantics of counterfactuals from this perspective. It would appear then 

that by adopting the standard model, researchers have suffered a series of theoretical and 

empirical defeats (in that study of most of the linguistically and psychologically interesting 

aspects of language has been put on hold until such time as advances in the study of genetics 

makes further progress possible). What’s worse, however, it that for many, it appears that the 

scientific war has been lost as well: much research on the standard model now makes a 

distinction between people’s idealized linguistic competence, and their actual linguistics 

performance, which can be summarized, briefly, as follows: language is possible only because of 

rules that are not evident in people’s use of language, and thus competence, the linguistics rules 

that make language possible, can and should be studied independently of the only evidence for 

them (people’s actual use of languages, performance; Chomsky, 1965); for many, the scientific 

study of language has been replaced by a pre-occupation with the philosophy of science 

(Nunberg, 1996).  

 

 

What is language? An information theoretic approach 
Historically, theoretical approaches to human communication have overwhelmingly adopted a 

generative, taxonomic approach to explaining how semantic information is communicated in text 

or speech. Linguistic communication has been seen as a process of encoding, transmitting and 

decoding tokens of meaning types. These meaning types have been assumed to be taxonomically 

organized, and encoded and decoded by rules that allow messages to be generated from them. 

From this perspective, the challenge facing both language learners and theoretical linguists is 

inductive: the correct taxonomy of meaning types and generative rules for a given language must 

be inferred from whatever data is available to the learner of theorist. As I have tried to show in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!Statements that run counter to what actually happens in the world, such as, “If JFK had not been shot…”!



the brief review above, the evidence of history suggests that the problems these inductive 

challenges pose are insoluble. 

 

However, in contrast to the inductive models that have dominated linguistics (and the 

psychology of language), both information theory (and the study of artificial communication 

systems) and empirically grounded psychological theories of learning describe deductive 

processes based on prediction and discrimination (Shannon, 1948; Weaver & Shannon, 1963; 

Kullback & Leibler,1951; Rescorla & Wagner, 1972; Ramscar et al, 2010). Seen from this 

perspective, communication need not require the induction of taxonomic semantic classes and 

rules for their combination; nor need it involve the transmission of tokens corresponding to 

semantic types between speakers.   

 

To explain why, it is worth describing in some of the important empirical and theoretical work in 

information theory and learning theory that I shall suggest, taken together, can provide a far 

more productive alternative to the standard model of language.  

 

 

Discrimination, information and “The Bandwagon” 

To help understand the importance role discrimination and prediction play in information theory, 

it is worth reflecting on how Shannon’s seminal (1948) results arose out of earlier work on 

communication by Hartley (1928) and Nyquist (1924). While Nyquist’s (1924) focus was firmly 

on telegraph engineering, the problem he addressed – how to communicate between two points 

while eliminating errors that are likely to be introduced by the communication channel – is 

fundamental to information theory, and his paper contains two important results that influenced 

its development. The first of these was a logarithmic rule to describe the maximum amount of 

“intelligence” that could be sent across a telegraph wire:  

 

 W = K log m        (1)   
 

where W is the speed of transmission of “intelligence”, m is the number of current values, and K 

is a  constant. This law is not sufficiently general to describe all communication systems, 



however it is a special case of Shannon’!s later logarithmic law, and importantly, it can be seen as 

representing the beginning of a move to abstract the message contained in a signal away from its 

actual meaning. In addition, Nyquist showed how the message content of a signal could be 

encoded “"optimally” in order to "permit the transmission of the maximum amount of 

“intelligence” with any given number of signal elements. 

 

Hartley (1928) generalized many of Nyquist’s ideas, and was the first to formalize the 

differentiation between the information in a particular message and its meaning. In estimating the 

capacity of the physical system to transmit information, he showed, the question of interpretation 

could be ignored. Hartley demonstrated that each aspect of a signal could be considered as a 

perfectly arbitrary choice, and capacity could be determined by measuring the probability of a 

receiver distinguishing a given signal that was selected from that of selecting any of the other 

signals that might have been chosen. In doing this, Hartley generalized Nyquist’s logarithm law 

for the amount of information transmitted to: 

 

H = log S n          (2) 
 

where S in the number of possible symbols in a code, and n is the number of symbols in a 

transmission.  

 

The insights gained from this earlier work are immediately apparent in Shannon’s (1948) 

statement of the problem his theory of information sought to address: 

 
“The fundamental problem of communication is that of reproducing at one point either exactly or 
approximately a message selected at another point. Frequently the messages have meaning; that is 
they refer to or are correlated according to some system with certain physical or conceptual entities. 
These semantic aspects of communication are irrelevant to the engineering problem. The significant 
aspect is that the actual message is one selected from a set of possible messages. The system must be 
designed to operate for each possible selection, not just the one which will actually be chosen since 
this is unknown at the time of design.” 

 

Shannon's paper presents a number of fundamental results: the first of these, the source coding 

theorem for symbol codes establishes that, on average, the number of bits needed to represent the 

result of an uncertain event is given by its entropy (this described in more detail below). The 



noisy-channel coding theorem then states that reliable communication is possible over noisy 

channels provided that the rate of communication is below a certain threshold, called the channel 

capacity, and finally the paper shows how using appropriate encoding and decoding systems 

allows this to be approached in practice. 

 

Importantly, Shannon solved the problem of communication over a noisy channel (McKay, 

2003) by focusing on the “system” itself rather than the channel (this approach was also 

advocated by Hartley). The system solution accepts the noisy channel as a given and focuses on 

the use of a communication system to overcome the limitations imposed by the channel by 

detecting and correcting the errors it introduces.  

 

 
 

Figure 1. A schematic diagram of a communication system (from Shannon, 1948) 

 

The system envisaged by Shannon comprises an information source, and a destination—as one 

might expect to find in any communication system—and adds an encoder before the 

communication channel and a decoder after it. The encoder encodes the source messages into a 

transmitted message, which adds redundancy to the original message. The channel then adds 

noise to the transmitted message, yielding a received message that comprises a mixture of the 

source message and the noise. The decoder then uses the known redundancy introduced by the 

encoding system (and the coding system itself) to discriminate the original signal from both the 

added noise and other possible signals.  

 



Shannon’s results were an enormously significant contribution to the development of modern 

communications and computer systems (if you are reading this on an electronic device, then the 

design of the technology that allows for both the storage of these words and their successful 

transmission to the interface on which you are reading them can trace its lineage directly back to 

Shannon’s original theorems), and they were immediately received with much interest outside of 

communication engineering. Applications of information theory were soon being made to 

biology, psychology, linguistics, physics, economics, the theory of organization, and many other 

fields, prompting Shannon (1956, in an article entitled, The Bandwagon) to warn: 
 

“Information theory has, in the last few years, become something of a scientific bandwagon. Starting 
as a technical tool for the communication engineer, it has received an extraordinary amount of 
publicity in the popular as well as the scientific press. In part, this has been due to connections with 
such fashionable fields as computing machines, cybernetics, and automation; and in part, to the 
novelty of its subject matter. As a consequence, it has perhaps been ballooned to an importance 
beyond its actual accomplishments… workers in other fields should realize that the basic results of 
the subject are aimed in a very specific direction, a direction that is not necessarily relevant to such 
fields as psychology, economics, and other social sciences. Indeed, the hard core of information 
theory is, essentially, a branch of mathematics, a strictly deductive system. A thorough 
understanding of the mathematical foundation and its communication application is surely a 
prerequisite to other applications.. ” 

 

Although I will not try to elucidate the mathematical foundations of information theory here (not 

least because others are far better capable of doing so, see e.g., McKay, 2003), I will try to 

underscore the logic of its application to communication, because it is likely that it was 

inattention to this logic that prompted the bubble of enthusiasm for information theory in 

psychology and linguistics to which Shannon alludes, and also the subsequent deflation of that 

bubble. 

 

First and foremost, it is important to understand what Shannon’s system solution does and does 

not require, and what it does and does not involve: 

 

1. The system solution requires a source encoder and a decoder that are both equally 

well aware of the scope of the possible messages that can be transmitted across the 

channel. 

 



2. The system solution is not at all concerned with the meaning of messages. The goal of 

Shannon’s system solution is that the receiver be able to successfully reconstruct the 

source message from the received message by discriminating the source message 

from other possible messages that might have been selected, and from noise 

introduced been by the communication channel.  

 

3. The purpose of the decoder is not to interpret or expand on the source message in any 

way. It is simply to reproduce the source message at the destination with no loss of 

signal content. 

 

I hope that the difference between communication as envisaged in information theory and 

communication as envisaged by the standard linguistic model is very apparent from these points.  

Shannon’s system solution is designed to allow the receiver to guess the message encoded at the 

source with a high degree of accuracy. The use of the word “decode” in information theory does 

not correspond to the idea of a listener decoding a speaker’s meaning in the standard model of 

language; it merely corresponds to the listener being able to successfully select the words a 

speaker did use from those a speaker might have used.  

 

It follows from thus that any direct application of information theory to questions in psychology 

or linguistics requires a very different model of language to the one normally applied in those 

domains. If one’s model of language involves the sending of messages and the extraction of 

meaning from them (and as I suggested above, explaining how this latter part happens is the 

biggest problem facing the standard model), then information theory may well be largely 

irrelevant to one’s concerns, since its application requires a model in which the channel aspects 

of linguistic communication involve no more than a listener being able to successfully 

reconstruct whatever words a speaker utters. It is clear that Shannon (1956) was very aware of 

these important differences:   

 
“I personally believe that many of the concepts of information theory will prove useful in these other 
fields-and, indeed, some results are already quite promising-but the establishing of such applications 
is not a trivial matter of translating words to a new domain, but rather the slow tedious process of 
hypothesis and experimental verification. If, for example, the human being acts in some situations 
like an ideal decoder, this is an experimental and not a mathematical fact, and as such must be tested 



under a wide variety of experimental situations.” 
 

 

It is to Shannon’s last question that I will now turn my attention. 

 

Learning, discrimination and the surprising capacities of rats 
“So the question is, under exactly what circumstances does a child conclude that a nonwitnessed [form] is 
ungrammatical?  This is virtually a restatement of the original learning problem.  Answering it requires 
specifying some detailed learning strategy.  It takes the burden of explaining learning out of the 
environmental input and puts it back in the child.  Use of indirect negative evidence… is thus, not strictly 
speaking, a feature of the child’s learning environment… but rather, a feature of his learning strategy, and 
hence it must be fleshed out according to a particular theory of these learning strategies.”  (Pinker, 1989)  

 
In his 1989 book, Learnability and Cognition, Steven Pinker considers – and rejects – the 

possibility that ‘indirect’ negative evidence could provide a solution to problems facing a child 

learning language over the course of a single page. Pinker’s approach is not unusual; it simply 

reflects a set of beliefs that have come to dominate our understanding of children’s language 

learning over the past half-century.  The standard model of language assumes that if children can 

use language, they must have mastered abilities that no amount of experience would appear to be 

able to equip them with. Accordingly, as I noted earlier, many proponents of the standard model 

of language have claimed that if the mechanisms the model supposes don’t appear to be learned, 

they must be innate. As Pinker’s remarks illustrate, this has in turn led many proponents of the 

standard model of language to actively argue against the possibility that language might be 

learned.   

 
To understand the rather bemusing consequences of this approach, one has to turn one’s eyes 

away from the realm of language learning and look to the more humble world of the laboratory 

rat: because for the past forty years, psychologists studying animal behavior have accepted that 

explaining the behavior of rodents requires fleshed out theories of learning that endow their furry 

subjects with abilities that go far beyond anything a language researcher would suppose a child 

might do. A large body of evidence supports that idea that rats’ expectations provide a critical 

source of evidence across a wide range of learning tasks, and psychologists studying rats and 

mice have found that it is impossible to explain the cognitive behaviors of their rodent subjects 

unless they acknowledge that they are capable of learning in ways that are far more subtle and 



sophisticated than many researchers studying language would ever countenance in children 

(Rescorla-Wagner, 1972; Dyan & Daw, 2008; Ramscar et al, 2010).  

 
Not only have animal learning models been fleshed out in ways that embrace the idea that 

animals make extensive use of indirect evidence in learning, but the computational properties of 

these models have been extensively explored (see Danks, 2003 for a review), and the biological 

circuits that implement these mechanisms are fairly well understood (Montague et al., 1996; 

Schultz, 1997; Waelti, Dickinson & Schultz, 2001; Schultz, 2006; Niv, 2009). More, as I will 

endeavor to show, research on animals has shown that while, say, rats may not have been blessed 

by nature when it comes to communicative capacities, those abilities that they do have would 

appear to successfully approximate the qualities one would expect to find in an ideal Shannon 

decoder (Gallistel, 2003). 

 

As with information theory, a little history may help in explaining this point, becaused while 

much of our contemporary understanding of animal learning has its origins in Ivan Pavlov’s 

(1927) classical conditioning experiments, it is critical to note that the conception of learning that 

people usually draw from Pavlov’s work is, in most ways, the exact opposite of the 

understanding produced by the revolution that has occurred in the field of animal learning in the 

century following Pavlov’s initial discoveries (Rescorla, 1988).   

 

As is well known, Pavlov discovered that if he rang a bell as he presented food to a group of 

dogs, they soon began to salivate on hearing the bell, even when no food was on offer.  These 

findings gave rise to the view that Pavlovian learning is a process of association, in which 

animals learn to ‘associate’ previously unrelated things in the world, such as a bell and a meal, 

by tracking the degree to which a stimulus (a bell) and a response (salivation brought on by 

food) are paired. Unfortunately, this also led to the mistaken view that animal learning is a 

simple process measuring the co-occurrence of events. This (false) idea, that learning resulted 

automatically from the repeated co-occurrence of a stimulus and a reward or punishment, in turn 

gave rise to two popular misconceptions about the conditions that are necessary and sufficient for 

learning: first, that explicit ‘rewards’ or ‘punishments’ are necessary for learning (false); and 

second, that a simple co-occurrence between a “stimulus” and a “response” is sufficient for 



learning: i.e., if a bell is simply paired with food often enough, a dog will always learn the 

association (wrong again; Rescorla, 1988). 

 

A single experiment can show how both of these ideas are wrong (Rescorla, 1968): consider a 

variant of the classic Pavlovian conditioning paradigm in which rats are conditioned to associate 

a tone with mild electric shocks.  The schedule of tones and shocks given to a first group of rats 

might look like this: 

 

tone – shock   

♩  -  !   ♩ - !   ♩ - !   ♩ - ! 
 … 
!  !  !     time  !  !  ! 
 

Figure 2.  Schematic of a training schedule used by Rescorla (1968). Here, the rate of tones absent shocks is 0. 
 

 

Like Pavlov’s dogs, rats trained in this way will quickly learn to ‘associate’ the tones with the 

shocks, freezing whenever a tone sounded. If we now take another group of rats and expose them 

to the same number of tones followed by shocks as the first group, while also introducing a 

number of tones that are not followed by shocks (Rescorla, 1968): 

 

 

♩ ♩ ♩  -  !  ♩ ♩ ♩ - !  ♩ ♩ ♩ - !  ♩ ♩ ♩ - ! 
 … 
!  !  !     time  !  !  ! 
 

Figure 3. A training schedule in which the background of tones absent-shocks increases. Although the absolute 

number of tones leading to shocks is identical, only 1 in 3 of the tones is now followed by a shock, and the degree to 

which rats condition to the relationship between the tones and the shocks diminishes proportionally (Rescorla, 

1968). 

 

As the number of tones that don’t result in shocks increases, rats will come to associate the tones 

with the shocks less and less. Indeed, if the background rate of the tones is varied (i.e., if the 

number of tones that lead to nothing is increased and decreased), the degree to which a rat will 

freeze upon hearing the tones will decrease in direct proportion to the background rate (Rescorla, 

1988).  Indeed, as the background rate of tones increases, conditioning decreased until the rats’ 



responses to the tones all but disappeared, even though the rate at which the tones co-occurred 

with the shocks remained exactly the same. 

 

This has important implications for the naïve model of learning I described above (Recorla, 

1988): Given that there is no change in the ‘association rate’ between A and B – only the 

background rate varies – it follows that the difference in learning between the groups of rats is 

due to what the rats learned on the  “no shock” trials.  It follows, therefore, that if the differences 

in what the two groups of rats learns is driven by the non-occurrence of expected events, learning 

cannot simply be a process of tracking the co-occurrences between cues and events. 

 

There is, however, more to learning than simply counting successful and unsuccessful 

predictions; because learning serves to increase the reliability of future predictions, it is also 

competitive. Blocking (Kamin, 1969) is a simple statistical consequence of the way learning 

serves to reduce uncertainty about future events: once a learner has learned to fully predict an 

outcome from a given cue, learning about additional cues is unnecessary, becuase the 

information provided by them will be redundant. Informally, one might think of uncertainty as a 

finite resource, which is depleted as successful predictive cues are learned. When a set of cues 

already fully predicts an event, there will be little uncertainty available to drive the learning of 

other cues to that event. As a result, cues can be seen as competing with one another for 

predictive value.   

 

Blocking is easily illustrated in regards to animal learning: for example, if a rat has already 

learned that it will be shocked when it hears a tone, and a light is subsequently paired with the 

tone in training, the rat will fail to learn to value the light as an additional predictive cue.  

Because the tone is already fully informative about the upcoming shock, the information 

provided by the light is redundant, and so the rat’s prior learning about the tone blocks 

subsequent learning about the light. As results like this demonstrate, rats do not learn simple 

“associations” between stimuli and responses; rather, they learn the degree to which cues are 

systematically informative about their environments.  

 



This idea – that rats learn to predict, and in some sense ‘understand’ the world around them by 

monitoring when their predictions are successful and when they result in errors – can be 

formalized mathematically in a relatively straightforward manner (Rescorla-Wagner, 1972; 

Mackintosh, 1975; Pearce & Hall, 1980; Dickinson, 1980; further, the error-monitoring captured 

by formal models of animal learning appears to have a straightforward neural implementation: 

Schultz, Dayan & Montague, 1997; Schultz & Dickinson, 2000; Waelti, Dickinson & Schultz, 

2001; Daw & Shohamy, 2004; Schultz, 2006, 2010).   

 

Given the logic of this discussion of error and expectation, it may seem natural to wonder – but 

what expectations? Which errors? For instance, given that the rats in Rescorla’s experiment had 

no a priori knowledge about the relationship between the tones and the shocks, it should strike us 

as suspect that only the background rate of the tones seems to matter in their learning.  This is 

because, of course, it isn’t the only thing that matters. In principle, everything in the rat’s 

experience and environment matters in predicting the shock (Rescorla, 1988). However, in the 

same way that increasing the background rate of the tones decreased their relevance in predicting 

shocks, the rat’s previous experience with other aspects of its environment has resulted in 

learning about their background rates, and this prior learning influences – and indeed, is integral 

to – the rat’s subsequent learning. For example, the degree to which the color of a rat’s enclosure 

is learned as cue to the shocks, will be affected both by the rate at which the color of the 

enclosure has been previously experienced in situations that did not lead to shocks, and the rate 

at which the color of the enclosure is subsequently experienced in situations that do not lead to 

shocks. Thus, in principle, learning about the tones takes place against the backdrop of the rat’s 

entire experience with every aspect of its environment. Learning, then, can be seen as a process 

that samples cues in the environment, while subjecting them to a competition process that biases 

what gets learned – discriminating in favor of more informative cues to events, and 

discriminating against less informative cues (Rescorla, 1988).  

 

For the sake of simplicity, models and explanations will tend to focus on the most novel – and 

hence, most informative – cues in a given environment, while ignoring other potential cues, 

whose background rates are likely to be so high as to render them irrelevant in competitive 

terms.  However, it is important to understand that the novelty of the tone is entirely relative: it 



only makes sense to assume that the tone is novel if we also assume that every other available 

perceptual cue is not as novel. Accordingly, in relation to a rat learning from its environment, it 

only makes sense to describe the tone as a ‘novel’ perceptual cue if we assume that this novelty 

has been computed in relation to all of the other perceptual cues available to the rat (Rescorla, 

1988; Ramscar et al, 2010; this point may help clarify why animal researchers formally relate 

learning to a “stimulus complex,” Rescorla & Wagner, 1972, rather than an individual stimulus).   

 

Finally, it should be emphasized that in discrimination learning, the value of positively 

informative relationships – such as the predictive value tones might have in relations to shocks – 

is learned as a result of the competitive elimination of less informative relationships.  Since the 

latter inevitably outnumbers the former, it follows, perhaps surprisingly, that expectations that 

are wrong have more influence on the shape of learning than expectations that are right. 

 

These last points underline the relationship between learning and information. Since the late 

1960s, “associative” learning has actually been understood as a discriminative process driven by 

prediction. What this means is that the “goals” of animal learning systems might be re-described, 

in Shannon’s terms, as a process of decoding information available in the environment.  

 

Consistent with this, Gallistel (2003) has shown that if we assume that the messages to be 

decoded are not sent from a source, but rather provided by the environment, animal learning can 

be seen as approximating an ideal decoder. Learned can be formalized in terms of information 

provided by events in the environment, and the informativity of these events is shaped by what 

the animal already knows, because any prior learning that will determine how much 

“information” is any new experience, and in what way it is informative to a learner. Gallistel 

(2003) shows how by adopting this perspective, the mechanisms that have been proposed to 

account for phenomena associated with animal learning (e.g., Rescorla & Wagner, 1972) can be 

shown to be formally equivalent to an information theoretic model in which learning is driven 

both by the information in the environment (the source message), and what an animal has learned 

as the result of previous experience (the source code). In Gallistel’s (2003) model, learning only 

happens in response to informative events, and it can only occur if the amount of information in 

an event does not exceed a given threshold (the channel capacity; see also Gallistel & Gibbon, 



2002). From this perspective, paralleling Shannon’s definition of communication, the 

fundamental problem of learning is seen as that of predicting at one point (in the brain of the 

learner) either exactly or approximately an event that occurs at another point (in the 

environment). As in Shannon’s view of communication, the formulation of these predictions is a 

reconstructive process based on a source code (prior experience) and the system is “designed” to 

predict not just events that have occurred, but also events that might occur (i.e., in learning, 

experience modifies the source code to enable more exact prediction of events in the future). 

 

Do human beings act as ideal decoders? 

Gallistel’s results showing that animal learning can be modeled as decoding in information 

theoretic terms are encouraging if one’s goal is to apply information theory to human 

communication and learning; however for all the encouragement they offer, they are no more 

than suggestive in this regard. It doesn’t follow from that humans do act as ideal decoders, nor 

does it follow that human communication has the kind of mutually predictive structure that one 

might envisage from were one to view it from an information processing perspective. To return 

to Shannon (1956), the question of whether human beings can and do act like an ideal decoder in 

communication, “is an experimental and not a mathematical fact, and as such must be tested 

under a wide variety of experimental situations.” 

 

One initial test of this suggestion is provided by Ramscar, Yarlett, Dye, Denny & Thorpe (2010).  

Ramscar et al exploited the discreet characteristics of linguistic signs to explicitly contrast the 

predictions of the standard linguistic model with those of an ideal decoder in a series of 

computational and empirical studies of learning. To explain these results, it will be first helpful 

to go into a little more detail about one of the results provided by Shannon (1948).  

 

Shannon defined entropy to represent the absolute limit on the best possible lossless compression 

of any communication, given certain defined constraints. If messages are encoded as a sequence 

of independent and identically distributed random variables, then Shannon's (1948) source 

coding theorem shows that, in the limit, the average length of the shortest possible representation 

that can encode the messages in a given alphabet is their entropy divided by the logarithm of the 

number of symbols in the target alphabet. 



 

Entropy (H) is thus the average probability of a given random variable N with a range of value 

n1,...,nk, and can be defined as: 

     (3) 

 

Entropy allows the expected value of the information contained in N to be quantified, and this 

quantity is usually given in units such as bits (where a bit is the amount of information stored by 

a digital device or other physical system that exists in one of two possible distinct states).  

A fair coin has an entropy of one bit. However, if the coin is biased, then uncertainty about it will 

be lower (when asked to bet on the outcome of throws of a biased coin, one would preferentially 

bet on the most frequent result), and thus the Shannon entropy is lower. A succession of 

repeating characters will have an entropy rate approaching 0, since every successive character 

will become more predictable. Accordingly, the more uncertainty there is about N, the higher its 

entropy will be in bits, which means that the size of the shortest possible representation that can 

encode the messages in a given code will increase accordingly. 

 

To get a better understanding of what this means in terms of human communication, if we 

assume that to learn and communicate about distinct entities or states of affairs in the world we 

must discriminate them, then entropy can usefully be understood as a quantification of 

discriminability, in that two different physical states are needed in order to distinguish between 

two possible entities in a code; and that differences in discriminability are balanced by biasing 

the coding of less likely (and therefore less easily discriminated) coded entities over more likely 

(and therefore more easily discriminated) entities, so that less likely entities are encoded more 

informatively than more likely entities (see also Ramscar et al, 2010).  

 

The idea that every discrete piece of information must be encoded lies at the heart of information 

theory, and the underlying logic of this is particularly relevant to the idea that the relationship 

between signs and their meanings is bi-directional (so that the meaning of a sign can be inferred 

from it). As Ramscar et al (2010) point out, this idea (which is a basic assumption of the standard 



model of language) is at odds with the idea that symbols are abstract representations, because 

abstraction is not a bi-directional process. Abstraction involves reducing the information content 

of a representation, so that only information relevant to a particular purpose is retained (Hume, 

1740; Rosch, 1978), which means that in Shannon’s terms, abstraction is not lossless, and as 

such, cannot be a bi-directional process: one can abstract from a larger body of information to an 

abstract representation, but one cannot reverse the process simply because discarded information 

is—by definition—not coded for, and therefore unrecoverable.  

 

Ramscar et al tested two hypotheses relating to the assumption of bi-directionality: first, that the 

sparse, discrete nature of signs (e.g., the word “dog”) would not provide sufficient coding 

resources to discriminate between the elements of complex, high dimensional sorts of things 

signs actually tend to refer to in the world (such as dogs), and second, that if the coding 

relationship was reversed, so that objects in the world served as the basis for coding signs, then 

successful coding of meaning-sign relationships would be possible, and that the discrimination of 

the meaning of signs would be driven by abstraction (the discarding of unnecessary information). 

 

 
Figure 4. Examples of the category stimuli and structures trained in Ramscar et al (2010) Experiment 1 (James, 
Shima, Tarr, & Gauthier (2005). Note that body type does not discriminate between categories. The discriminating 
features that need to be learned in order to successfully distinguish the sub-categories are circled on the low-
frequency “dep” and high-frequency “tob” exemplars. Ramscar et al found that participants were able do this if 
training was structured to allow for discrimination as a result of cue competition (i.e. if there were sufficient coding 
resources available). In this case, the shared high frequency “tob” and low frequency “dep” bodies caused 
participants to erroneously expect “dep” on “tob” trials, causing the error-rate of the bodies to rise relative to the 
other features that predicted “dep,” and “tob.” Cue competition then resulted in these other features being favored as 
predictive cues, and information about the body features being discarded. When training was structured to inhibit 
cue competition (i.e., when the number of coding bits was drastically reduced relative to the information to be 



encoded), participants simply learned the degree to which each label predicted each feature. Participants who 
learned the category structures in this way failed to classify the low frequency exemplars.  
 

To examine this suggestion formally, Ramscar et al (2010) trained participants on the category 

structures shown in Figure 4. To successfully learn to classify the objects in this task, 

participants had to learn to ignore (discard) salient yet uninformative features in forming a 

representation that would facilitate classification.  In other words, success in the task required 

learning to discard information about the bodies of the objects because these were uninformative 

cues to category membership, which both required learning from prediction errors generated by 

the body cues, and recoding the residual predictive value that was subtracted from the body 

features to other cues. 

 

Because learning is driven by prediction (expectation) and the structure of information (the 

number of coding bits available with respect to the amount of events that subsequently occur) 

can play a critical role in whether or not competitive learning occurs in a discriminative learning 

model. Learning the fribble features in Figure 4 as cues to discrete Labels – such as “wug” or 

“dax” (Feature-to-Label Learning) – allows for competitive learning amongst the co-varying 

features (which provide for a rich coding media), allowing value to shift from features that 

produce more error to those that produce less, discriminating the informative features from those 

that are uninformative (Ramscar et al, 2010). However, when this arrangement is temporally 

reversed, and the process becomes one of learning to predict a set of Features from a discrete 

Label (Label-to-Feature Learning), competition between cues cannot occur, since the label is the 

only cue available (value cannot transfer to other cues when there are none). Accordingly, when 

the label simply cues each feature at the level of its experienced frequency, what is learned is a 

model of the probability of every feature related to the label. Thus while FL-learning results in 

an informative model – cues are weighted according to their value in predicting the labels – LF-

learning results in a simple probabilistic model of the contingencies of the learning environment 

(Ramscar et al, 2010). 

 

By employing a speeded learning paradigm in which the presentation time of the objects to be 

learned about was limited to just 175 ms, Ramscar et al were able to control whether competition 

was available to participants in learning. Ramscar et al found that participants were only able to 



learn to categorize the low frequency exemplars in Figure 4 when FL-training allowed for the 

informative use of negative evidence in discriminative learning. Participants given LF-training 

failed to learn to correctly classify the low frequency exemplars.2  

 

For the present purposes, there are two points worth making about this result: First, learning 

about the meaning of signs is clearly not a bi-directional process. When participants were forced 

to use their representations of the features of objects as a source for encoding labels, they learned 

the meanings of the signs very successfully; when the labels were made to act as a source for 

encoding features, they did not learn the meanings of the signs. Second, it seems that learning to 

code the relationship between signs and the things in the world they relate to does appear to 

involved discarding information—it is a lossy process—and thus if one’s theory of 

communication requires that meaning be recoverable from signs (as the standard model does), 

then this is a problem. 

 

If on the other hand, we assume that human communication is shaped to satisfy information 

theoretic constraints, and that language is a system in which meaning is something that a listener 

generates as part of the process of decoding a message (where decoding simply means accurately 

reconstructing a message with a high degree of confidence), then the fact that participants in 

Ramscar et al’s experiment appeared to be highly adept at learning meanings as cues to signs is 

very promising, since it would suggest that this kind of learning is highly compatible with 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!The effect of this manipulation is comparable to the difference between what are often termed generative and 

discriminative learning strategies, which have been much explored in machine learning. In machine learning, both 

generative and discriminative strategies are often used for estimating the likelihood that a particular item belongs to 

a given class in a classification task. Generative learning strategies solve this problem by building a probabilistic 

model of each category, and then using probabilistic inference to identify which class was most likely to have 

generated an item. By contrast, discriminative learning strategies seek to optimize the estimation of the probability 

of class labels, given the item to be classified. Studies have shown that generative and discriminative approaches 

differ in the speed and accuracy of their learning, the representations of the classes that they produce, and the kinds 

of classifications they result in (Efron, 1975; Rubinstein & Hastie 1997; Ng & Jordan, 2001; Bouchard & Triggs, 

2004; Xue & Titterington, 2008; Ramscar et al, 2010; see Yuille 2005; 2006 for a discussion of conditions under 

which the predictions of the two converge).  

!



Shannon’s system model of communication, and the idea that humans can behave in a way that 

approximates an ideal decoder. 

 

 

!

Figure 5. A depiction of the problem posed by color-word learning in a natural environment. In word-
learning. Given the ubiquity of color, hearing a color word in isolation is uninformative, since red and 
blue are both likely to be present in the environment whenever “red” and “blue” are heard. To learn to 
map hues to color words, a child needs an information structure that favors the correct mappings: for 
example, provided the child knows the word for “wug,” as “then look at the wug it’s red” will provide an 
information structure that will allow a child to discriminate a meaningful mapping between the hue red 
and “red” (the information structure in this instance is equivalent to FL-learning in the adult experiment 
conducted by Ramscar et al – predicting labels from the world provide the child with a rich media for 
encoding the correct mappings to labels).   
  
!
The drawback with this experiment is, of course, that it only vaguely approximates the kind of 

language-learning situations children are actually exposed to. Ramscar et al address this problem 

by showing how the same kind of analysis of information structure can be used to solve a 

problem first noted by Darwin (1877), children’s color word learning: 

 
“I carefully followed the mental development of my small children, and I was astonished to 
observe [that] soon after they had reached the age in which they knew the names of all the 
ordinary things that they appeared to be entirely incapable of giving the right names to the colors 
of a color etching. They could not name the colors, although I tried repeatedly to teach them the 



names of the colors. I remember quite clearly to have stated that they are color blind.” (Darwin, 
1877). 
 

Ramscar et al observed the ubiquity of colors of all kind may be part of the problem facing 

children. Because children will constantly be exposed to a variety of hues, hearing a color word 

in isolation is uninformative, since red and blue are both likely to be present in the environment 

whenever “red” and “blue” are heard. Ramscar et al found that if children knew the word for 

objects, training on sentences such as “look at the object it’s red” provided an information 

structure that allowed child to discriminate a meaningful mapping between the hue red and “red” 

(the information structure here is equivalent to FL-learning in the adult experiment conducted by 

Ramscar et al – predicting labels from the world provide the child with a rich media for encoding 

the correct mappings to labels). However, when children were provided with sentences such as 

“look at the red object “ failed to learn to map hues to color label, because in this instance, 

hearing the color word prior to the object provided only an insufficient medium for encoding the 

information required to make the appropriate mapping. 

 

To further examine whether children’s learning to map meanings to signs approximates an ideal 

decoder, Ramscar, Dye, Muenke-Popick & O’Donnell-McCarthy (2011) gave children training 

in which they were shown a set of objects (say bears), and asked, “What can you see? Bears. 

There are four.”  As a result of this, Ramscar et al expected children would learn about the 

relationship between the pictorial representation (the bears) and the number word (four).  

Specifically, on a trail with theis information structure, the child will learn: 

 

1. All of the features present (e.g., color, shape, set-size, etc) will be reinforced as cues 

to “four.” 

 

2. Given that the child is playing a ‘number’ game, in which number words have been 

generated from similar items, she will be expecting to hear other numbers as well 

(such as “three” and “five”), based on prior experience.  This will generate an error 

signal for all of the features that prompted those erroneous expectations, which will 

cause the features present to be unlearned as cues to other number words.  This means 



that not only will set-size four be unlearned as a cue to “three” and “five,” but so will 

all the consistently unreliable features, such as color, shape, and so on. 

 

 

 

Thus, while 3, 5 and 7 were not trained in the experiment, if children were learning to make 

informative predictions, then 2, 4 and 6 trials will provide information about 3, 5 and 7, even 

when there is no explicit training on 3, 5 and 7. For example, while the individual cue value of 

set-size five cannot be affected by learning on a 4-trial, since it is not present, other potential 

predictors of set-size five will be present on that trial (e.g., color, shape, and so on), and their 

informativity as cues to “five” will be affected by this. The non-occurrence of “five” will cause 

the informativity of cues that erroneously predicted “five” to decrease, which will result in a 

relative increase in the informativity of set-size five as a predictor of “five.”  As a result, the 

child will be able to better discriminate the cues to “five” (i.e., she will have learned about 

“five”), even though – or, in fact, because – “five” was not heard in this context. 

 

Perhaps counterintuitively, this also means that for a child who has some experience of “four,” 

but has yet to fully discriminate the mapping between set-size four and “four,” trials in which 

“four” is presented will not be particularly informative about “four.” This is because the 

informativity of set-size four will not change relative to any other information present on 4-trials, 

since they will all be similarly learned as informative predictors of “four.” On the other hand, a 

4-trial will decrease the informativity of any cues that prompt erroneous expectation of other 

number words.  Thus, for example, an object’s shape might lose its informativity about “five,” 

making set-size five more informative about “five” (and so on), and over time this process 

should help a child improve her discrimination of a system of numbers.  

 

Consistent with this analysis, Ramscar et al (2011) found that FL-trained children not only 

improved in their ability to identify sets of 2, 4 and 6, but also that they improved on 

discriminating 3, 5 and 7 when none of 2, 4 and 6 were present.  Children given LF-training 

(“What can you see?  There are two balls”) showed no improvement on any of the tested set 



sizes. (Similarly, Ramscar & Dye, 2011, showed that training older children solely on regular 

plurals could lead to a reduction in plural over-regularization, for much the same reasons.) 

 

Finally, Ramscar, Suh & Dye (2011) applied the same approach in an examination of the reasons 

for why people tend to lose “perfect” or “absolute pitch” – the ability to name notes based on 

absolute frequency information.  It has long been known that 1) perfect pitch is typically quite 

rare among the general population and 2) that possessors perform less well than non-possessors 

on tests of relative pitch. Ramscar, Suh & Dye (2011) used an FL-LF design to train participants 

to either acquire more accurate representations (LF) – which, since it can only produce a 

generative model of the tone space, ought to be more informative in absolute pitch tasks – or 

better between-category representations (FL) – which, since it increases the discrimination of 

categories, ought to be better for relative pitch learning, at a cost to accuracy. Consistent with 

this, Ramscar, Suh & Dye (2011) found that LF trained participants were better at perceptually 

discriminating trained notes from near-identical lures than FL-trained participants (indicating 

that they had formed a less abstracted representation of what they had heard), they performed 

proportionally less well at discriminating octave transpositions of the trained notes from lures 

(indicating that they had abstracted the pitch categories less well). A similar pattern of results 

was obtained in tasks matching tones to labels. Importantly, FL trained participants showed a 

loss of sensitivity to within-category discriminations as a result of learning pitch category 

representations. In other words, their representations of pitch had become more symbolic.  

 

This latter finding thus further supports the idea that abstraction is not a lossless process. Further, 

it also suggests that signs themselves are probabilistic entities: signs can be seen as being more 

or less “symbolic” (and abstract) depending on the degree to which the information in the 

representations learners have for them has been shaped by abstraction.  

 

Encoding, decoding and information loss 

It is worth reflecting briefly on what the findings reviewed above mean for the standard model. 

The standard model of language (which depending on one’s take on the history of ideas, we 

inherited from either de Saussere, the Vienna Circle, or the Greeks) assumes that meaning is 

conveyed by language in much the same way that passengers are conveyed on a plane. The 



material to be conveyed (be it people or meanings) are squeezed in at the point of departure, and 

then unpacked at the point of arrival. The idea, formed before we had the formal concepts, is that 

linguistic coding is in some sense lossless (in communications engineering, lossless data 

compression is a class of data compression algorithms that allows the exact original data to be 

reconstructed from the compressed data). However, a key requirement for lossless data 

compression is that sufficient coding resources are deployed to allow all of the physical state 

differentiations in the original data set to be preserved and reconstructed (the original data is 

compressed by eliminating redundant or improbable information in the original data; Salomon & 

Motta, 2009). Yet the reason that very marked differences were seen in FL versus LF learning 

across all of the experiments reviewed above was because FL learning is lossy (Figure 6).  

People failed to discriminate labels after LF training because they build up codes that were in 

some sense accurate in their representation of the world, but uninformative about the labels they 

were supposed to be learning. On the other hand, people performed very well when it came to 

discriminating and using labels after FL training, but the reason that they were able to do so in 

that they learned abstract codes that were optimized for predicting the signs, and because this 

optimization process involved discarding any data that was uninformative to that task.  

 

 
Figure 6. Simulations of how identical sets of labeled categories in overlapping artificial  “waveforms” 
structured are learned when trained either LF (labels predicting waves) or FL (waves predicting labels; 
Ramscar, Suh & Dye, 2011). The categories are labeled a-g, and the probability of a wave component 
occurring in each category is represented in the right panel (the LF-learned model; because LF-learning 
results in a generative model, it accurately depicts the training data). As can be seen, the representation of 
each component in the FL-learned model differs markedly from its empirical rate of occurrence, with 
some components being completely discarded in order to better discriminate the code that best predicts 
the labels. Critically, the FL-learned model does not contain sufficient information to allow the LF-model 



to be reconstructed from it. 
 

This in turn suggests two things: First, if we agree that the fundamental problem of 

communication is that of reproducing at one point either exactly or approximately a message 

selected at another point, then human learning appears to be ideally suited to learning source 

codes that will allow for the construction of messages about the world.  However, while it is 

certainly true that these messages will refer to or be correlated according to some system with 

certain physical or conceptual entities, it would appear that the design of human learning 

considers these semantic aspects of communication largely irrelevant to the engineering problem 

(most of this semantic information appears to be thrown away in coding). That is, it would 

appear that, supporting Shannon’s (1956) suggestion, when tested under a wide variety of 

experimental situations, human beings do, in many situations, act like ideal decoders. Second, it 

would appear that language does not convey meanings in the way that is commonly supposed. 

One of the basic ideas of the standard model of language—that meanings are coded for in speech 

or text, and can be extracted from them—appears to be highly inconsistent with the way human 

beings actually learn and use linguistic codes (this problem has been noted before, see e.g. 

Wittgenstein, 1953; Quine, 1960; the only difference in this instance is that information theory 

allows it to be formalized and examined). Moreover, not only does it appear that appeals to 

innate abilities won’t seem to help here, but further, the empirical facts militate against the idea 

that genetically specified “concepts” can still (somehow) allow meanings to be encoded in and 

decoded from linguistic signals. (It is true that one might defend the standard model by appealing 

to pragmatic inferences at this point, but this in turn raises the question of why one would 

assume a model based on the encoding decoding of meaning in signals if meanings are not 

actually decoded from signals, but rather generated by pragmatic inference.) 
 

Some properties of the code 

Like science, I will argue that linguistic communication is a conventionalized, probabilistic 

process aimed at understanding, and that it is driven by evidence. Speakers are engaged in the 

business of predicting one another, and the more evidence they can amass (based on linguistic, 

social, conventional, etc, factors) the better they will understand one another. While this view is 

in many ways at odds with the standard model of language, there are a number of reasons for 



believing that there may be the benefits to be had from exploring alternative conceptions of 

language and communication.  

 

Prior to the middle of the 20th century, numerous alternative approaches to the study of language 

were being explored (e.g., Wittgenstein, Skinner, Quine, Harris), and the “revolution” that led to 

the dominant hold that varieties of the transformational, generative account of language have on 

theory was not founded on any empirical or theoretical discoveries, but rather on claims about 

the inadequacies of other approaches (Chomsky, 1957; 1959; Miller & Chomsky, 1963). The 

reason so many people have accepted what should be the unacceptable conclusion that language 

and meaning are innate is because of a widely held belief that language could only be explained 

by some kind of generative account, and that, in principle, there can be no alternative conception 

of language. 

 

Some of the inadequacies of these arguments have already been laid bare. For example, 

Chomsky (1957) argues against the kind of predictive account embodied in an information 

theoretic approach to language by noting (correctly) that Colorless green ideas sleep furiously 

and Furiously sleep ideas green colorless have the same frequency in English (before 1957 this 

was zero). Based on this, Chomsky makes the empirically false claim that, “Therefore, [we are] 

obliged to conclude that frequency reveals nothing about grammaticality.” As Pereira (2000) 

shows, this erroneous conclusion relies on the assumption that the probability of a type of event 

must be regarded as zero if it has not occurred so far (a result of using maximum likelihood 

estimation, MLE), and that if a better estimation method is applied (‘smoothing,’ Good, 1953; 

McKay, Degan, Lee & Perreira etc.) then based on normal English text, the first sentence is 

actually 200,000 times more probable than the second. 

 

Similarly, Miller & Chomsky (1963) offered an analysis that is taken by many as providing a 

demonstration that providing a probabilistic account of language is impossible. Miller & 

Chomsky observed that for an n-gram model to represent the intricacies of even a moderate 

proportion of English sentences, an apparently unlearnable number of statistical parameters 

would need to be estimated:   
 



 “Just how large must n and V be in order to give a satisfactory model? Consider a perfectly 

ordinary sentence: The people who called and wanted to rent your house when you go away next 

year are from California. In this sentence there is a grammatical dependency extending from the 

second word (the plural subject people) to the seventeenth word (the plural verb are). In order to 

reflect this particular dependency, therefore, n must be at least 15 words. We have not attempted 

to explore how far V can be pushed and still appear to stay within the bounds of common usage, 

but the limit is surely greater than 15 words; and the vocabulary must have at least 1,000 words. 

Taking these conservative values of n and V, therefore, we have Vn= 1045parameters to cope 

with, far more than we could estimate even with the fastest digital computers.” (p. 430; We have 

altered Miller & Chomsky’s notation from K and d to V and n for clarity.) 
 

Thus, as n increases, the number of potential parameters to be estimated grows as V n, where V is 

the number of tokens in the language. We can contextualize this (conservative) estimate of the 

number of parameters that any language model might need to estimate in various ways. For 

example, it has been estimated that a child with professional parents will only be exposed to 

around 11 million spoken words a year (or 11 x 106; Hart & Risley, 1995), and that the average 

lifetime consists only of around 2.2 x 109 seconds. By either measure, the figure of 1045 put 

forward by Miller and Chomsky is almost unimaginably larger.  

  

Once again, Miller and Chomsky’s assumption relies on MLE. Methods such as Good-Turing 

estimation allow for the estimation of the probability of hitherto unforeseen events (Pereira, 

2000), and unless we are to accept that not only syntax and semantics, but also our entire life 

histories are innate, the ability that people have to both learn from experience, and apply what 

they have learned in new circumstances, suggests that they too are capable of estimating the 

probability of novel events. Further, as Ramscar et al (2010) note, the wealth of experimental 

evidence showing that people are highly sensitive to the statistical properties of their languages 

would appear to offer an empirical refutation of Miller and Chomsky’s claim (unless, that is, we 

assume that people’s knowledge of the statistical properties of the vocabulary items in their 

languages is innate too).  

 

A second class of negative claim that has historically been used to undermine alternative 

approaches to human communication are arguments to the effect that a child learning language is 



somehow starved of useful information, and that language learning is impossible (poverty of the 

stimulus arguments). In a series of helpful and astute reviews, Pullum & Scholz (Pullum & 

Scholz, 2002; Scholz & Pullum, 2002; Scholz & Pullum, 2006) show how the literature on child 

language learning is awash with claims that generative grammars cannot be learned from the 

kind of language that a child is exposed to: 
 

[poverty of stimulus arguments take] the following form: (i) a fact about some natural language is 

exhibited that allegedly could not be learned from experience without access to a certain kind of 

(positive) data; (ii) it is claimed that data of the type in question are not found in normal linguistic 

experience; hence (iii) it is concluded that people cannot be learning the language from mere 

exposure to language use (Pullum & Scholz, 2002, p. 9). 
 

In showing that many such arguments fail to establish their claims, Pullum & Scholz note that 

another set of conclusions can be drawn from such arguments: namely (iv), that the linguistic 

“fact” that is supposed to be unlearnable is actually nothing of the sort, or (v), that learners don’t 

solve the learning problem in the way that a given argument supposes. Thus, given a poverty of 

the stimulus argument, it is possible either to conclude that language is innate, or else that the 

theoretical assumptions that lead to a nativist conclusion are false.  

 

The development of technology that allows large electronic samples of linguistic data to be 

stored and analyzed provides ever more support for these latter conclusions. For example, 

Baayen et al (in press) show that if the task of language learning is analyzed in terms of 

discrimination (i.e. that the goal of learning is to approximate a decoder, in Shannon’s terms), a 

modified Rescorla-Wagner implementation (Danks, 2003) trained on a relatively small corpus 

(~11 million two- and three-word phrases) can provides good empirical fits to human data on a 

wide range of effects documented for lexical processing, including frequency effects, 

morphological family size effects, and relative entropy effects. For monomorphemic words, the 

model provides excellent predictions with no free parameters, and for morphologically complex 

words, Baayen et al had only to add a few free parameters to enable the model to fit a broader 

range of data better and more parsimoniously than other models in the literature that were 

designed specifically for the task (e.g., Norris, 2006).  Further, the model also captures frequency 

effects for complex words, and phrasal frequency effects, even though it has no explicit 



representations of complex words or phrases (Baayen and Hendrix, 2011): it simply learns 

whatever discriminative (informative) code is in the training set, and then reuses this when 

tested. 

 

In other words, Baayen et al discovered that training a reading model on a small, representative 

sample of language enabled that model to respond to new data in a way that closely 

approximated a human reader. This suggests that far from being impoverished, the information 

in that a small, representative sample of language provided a good model of at least some human 

linguistic knowledge, and it hardly seems pushing the bounds of credulity to suggest that if a 

model based on empirically derived principles of learning can gather that kind of information 

from the linguistic environment, actual human language users will be perfectly capable of 

learning that information as well. 

 

Perhaps even more suggestively, Ramscar, Futrell & Dye (2011) have shown that the German 

grammatical gender system—derided as meaningless for generations by linguists, philosophers 

and psychologists—is an exquisitely structured system than balances information and learning 

constraints to manage the entropy of nouns in context. have accepted the idea that grammatical 

gender may have evolved separately in many different languages, even though it serves no 

apparent purpose. We question this assumption by considering whether German gender might 

play an informative role in language after all. By analyzing the information structure of German, 

we reveal how gender serves to make nouns more predictable in context. Ramscar, Futrell & Dye  

show not only that the gender system has structure, but also that this structure mirrors that of 

other subsystems of language (such as verb inflection), in that it is more specifically informative 

about high frequency items than lower frequency items (from the point of view of learnability, it 

makes obvious sense that information about high frequency items can be encoded in more 

efficient, conventionalized manner than that for than lower frequency items, simply because the 

probability that all the speakers within a given community will have the opportunity to master a 

convention will rise with its frequency). 

 

Ramscar, Futrell & Dye show that in comparison to English – a Germanic language that has 

largely shed its gender system – grammatical gender allows German speakers to use a wider 



variety of nouns after articles.  They then show how English has systematically compensated for 

its diminished gender system by extending the use of pre-nominal adjectives, employing them 

with greater frequency as the frequency of the nouns they precede decreases. Not only do 

English pre-nominal adjectives help to make nouns more predictable in context, but Ramscar, 

Futrell & Dye show that the distribution of pre-nominal adjectives is organized in the linguistic 

environment so that it optimizes this function, ensuring that pre-nominal adjectives provide more 

support for low frequency nouns than high frequency nouns, thereby helping to make all nouns 

equally predictable in context.  

  

These findings are consistent with Zipf’s famous ‘Principle of Least Effort,’ which holds that 

human behavior is shaped by a bias to minimize people’s “average rate of work-expenditure over 

time” (Zipf, 1935; 1949; this might also be thought of in terms of channel capacity, pace 

Shannon, 1948). Indeed, a growing body of evidence supports the idea that in language use, 

people manage the rate at which information is encoded in linguistic signals, avoiding excessive 

peaks and troughs in entropy across messages (Aylett & Turk, 2004; Levy, 2008; Jaeger, 2010).   

 

For example, Genzel and Charniak’s (2002, 2003) propose and provide support for the entropy 

rate principle, which holds that users produce language in a way that maintains a relatively 

constant average entropy rate.  The motivation for this principle comes from information theory, 

which suggests that the most efficient way of transmitting information through a noisy channel is 

at a constant rate.  The principle is empirically grounded, with a raft of findings suggesting that it 

holds true in speech and in text. For instance, in text the entropy rate principle predicts that if the 

sentences of a given text are equally informative when encountered in context, ignoring context 

should cause entropy to steadily increase as a text progresses (because the meaning in earlier 

parts of a text will serve to generate an informative context that will reduce the entropy of later 

parts). This finding has been confirmed in numerous corpus studies, and the same entropy-

increasing pattern has been found across different genres, and even within paragraphs (Genzel 

and Charniak, 2002; 2003; see also Keller, 2004; Levy, 2008; Jaeger, 2010).  

 

Similarly, in speech, word length – as measured in phonemes or syllables – correlates better with 

a word’s average predictability in context than with its frequency (Manin, 2006; Piantadosi, Tily, 



& Gibson, 2011).  This suggests that the more probable a word is in context, the less information 

it carries, and the more redundant it is, resulting in a shorter phonological form. In the same vein, 

studies have shown that even for the same word, instances that are more predictable will be 

produced with shorter duration and with less phonological and phonetic detail (Aylett 1999; Bell 

et al., 2003; Bell, Brenier, Gregory, Girand, & Jurafsky, 2009; Pluymaekers, Ernestus, & 

Baayen, 2005; van Son et al., 1998; van Son & van Santen, 2005).  

 

Taken together, these findings suggest not only that the linguistic environment is far from 

impoverished, but further, that viewed appropriately—as a source of information for predicting 

linguistic signals, rather than abstracting an ill-defined “grammar”—the linguistic environment is 

a rich repository of information for a learner trying to master the source code for her language. 

 

 

Human communication: the system solution 

If we allow ourselves to entertain the idea that there might be a better alternative to the standard 

model of language is wrong, this in turn poses a question: what is it? I suggest the solution is the 

same for human communication as it is for other communication systems, namely the system 

solution of Shannon and Hartley.  Whereas nativist approaches within the generative linguistic 

tradition (which also includes most of psychology over the past 50 years) have focused on the 

physical system (imbuing children with more and more innate abilities to facilitate 

communication), the evidence from both communication theory and psychology points in 

another direction: the solution must lie, in large part, in the system.  

 

Just as information theory sees, “the fundamental problem of communication [as] that of 

reproducing at one point, either exactly or approximately, a message selected at another point.” 

(Shannon, 1948), the problem of explaining the communication of semantic information can be 

seen as explaining how a listener reproduces a speaker's intended meaning (Ramscar et al, 2010). 

From this perspective, linguistic communication can be seen as a probabilistic process in which a 

speaker helps a listener to predict, either exactly or approximately, the speaker’s intentions 

(Ramscar, 2010; Ramscar et al, 2010; Ramscar & Dye, 2009; Ramscar & Yarlett, 2007; Baayen, 

2011; Baayen & Hendrix, 2011; Baayen et al, in press). 



 

What does this mean? First and foremost, it means that understanding language in terms of 

information means that we should give up the idea that language users decode, or extract, 

meaning from linguistic signals. The fundamental problem of the human communication system 

faces is that same as any other communication system: reproducing at one point either exactly or 

approximately a message selected at another point. That these messages have meaning; that is 

they refer to or are correlated according to some system with certain physical or conceptual 

entities is irrelevant to this engineering problem. The significant point to grasp is that the 

problem is that of selecting the actual message from a set of possible messages. The point—and 

it is a very large one—is that a human learner will only be able to select the appropriate message 

if they have learned the source code, and are able to use context to help in this process 

paragraphs (Genzel and Charniak, 2002; 2003). That is, users don’t decode meaning from 

linguistic signals, but rather they build up meanings in the process of decoding them: meaning is 

something a listener or reader constructs out of the source code she has learned, and the context 

provided by the next part of a message, to predict upcoming parts of a message. 

 

To return to an example of abstraction discussed above, the idea that a meaning can be conveyed 

by a word makes no more sense than the idea that someone might be able to “get” detailed 

information about the results and methods sections of a paper they had never seen, simply by 

reading its abstract. Given an abstract, one can only make guesses about the results and methods 

sections, making a kind of prediction about the kind of information they might contain. If the 

reader is an expert, the likelihood that these predictions will be more accurate, or even 

substantially correct, will increase. However, given no more than an abstract, the reader can do 

no more than make predictions, because the process of abstraction involves discarding 

information that cannot be later recovered from an abstract representation. Symbols are 

abstractions, and it follows similarly that the meanings of signals can only be inferred; language 

is a probabilistic practice in which a speaker helps a listener to predict, either exactly or 

approximately, the speaker’s intentions (Wittgesntein, 1953; Shannon, 1948). 

 

While this view is at odds with the standard view of language, it is highly compatible with an 

enormous array of empirical findings relating to language processing and the nature of language. 



Numerous results in a variety of research paradigms have revealed that when people are listening 

to or reading a sentence they build up a rich set of linguistic expectations, predicting upcoming 

words based on the structure and semantics of the prior discourse (see e.g., Tanenhaus, Spivey-

Knowlton, Eberhard & Sedivy, 1995; De Long, Urbach & Kutas, 2005; Kutas & Federmeier, 

2007; Pickering & Garrod, 2007; Garrod & Pickering, 2009; Tanenhaus & Brown-Schmid, 2008; 

Norris & McQueen, 2008; Altmann & Mirkovi#, 2009).  While this may seem obvious in 

idiomatic phrases, such as “cross my heart and hope to ___” or “hit the nail on the ___” a 

considerable body of evidence is consistent with the idea that this is true of language more 

generally, and that it is reflective of the fact that comprehenders behave like ideal decoders.   

 

For example, De Long, Urbach & Kutas (2005) measured event related potentials (ERPs) while 

participants read sentences like “the day was breezy so the boy went outside to fly a kite” and 

“the day was breezy so the boy went outside to fly an airplane.” Not only did they find that the 

less predictable airplane produce a larger n400 than kite (n400 is an ERP component typically 

elicited by an unexpected linguistic stimulus), but the same pattern held for the articles a and an 

as well. This suggests that participants were using context to predict not just kite, but also the 

article that preceded it, causing them to find “an” surprising as a result.  

 

While studies to date have often focused on anticipation of a specific word, object or event based 

on prior context (see e.g., Altmann & Steedman, 1988; Tanenhaus, Spivey-Knowlton, Eberhard, 

& Sedivy, 1995; De Long, Urbach & Kutas, 2005; Otten & Van Berkum, 2008), it is clear that in 

natural speech, listeners are anticipating (probabilistically) a range of different possible words 

that might follow in a given speech stream (Norris & McQueen, 2008). In much of the literature 

these predictions are seen as assisting the meaningful production and comprehension of 

language, but from the information theoretic perspective described here these predictions can be 

seen as actually comprising the meaningful use of language, because the goal of the 

comprehender is simply to predict the signal (Shannon, 1948; Ramscar et al, 2010; Ramscar, 

Matlock & Dye, 2010).  

 

There is a widespread consensus that “intention reading”— social prediction—is an important 

component of word learning (see e.g., Bloom, 2000; Tomasello, 2003; 2007); our proposal is that 



“intention reading” can be extended to language processing more generally. We argue that 

comprehension arises both out of what the listener knows—what she will predict—and what the 

listener is learning—what she will come to predict.  In order to predict a speaker, even partially, 

a listener must activate similar cues to those used by the speaker in generating an utterance.  As 

the speaker uses FL-learned cues to generate speech, the listener will activate similar FL-learned 

cues, allowing her to anticipate upcoming speech.  When the listener does not fully predict the 

speaker’s words—as will often be the case—further FL-learning will take place.  

Comprehension, like learning, is thus a process of having and modifying expectations.  

 

The most likely way a listener can predict a speaker is by sharing a cultural “source code” (as 

well as learning to fit this locally, c.f. Davidson, 1986). Linguistic distributions are not 

structureless, but rather, then might be better seen as a repository of recipes for the expression of 

ideas, shaped by the conflicting needs of learners and communicators.  Communities of learners 

and communicators, their interactions and their different needs are the forces that shape the 

social evolution of languages; and the evolutionary solutions that these communities evolve 

become encoded in the specific patterns of words they speakers use and transmit to learners. 

These patterns are a kind of or a kind of social art form, embodying the communicative recipes 

that each community has unconsciously evolved. 

 

To give an example of this, English speakers demonstrate a remarkable tendency to describe 

puppies as cute, little. Moreover, they are more likely to use redundant adjectives in conjunction 

with more specific, lower frequency nouns (Ramscar, Futrell & Dye, 2011). From the 

perspective of the standard model, this behavior is somewhat puzzling, given puppies are cute 

and little, and given people know what cute, little and puppy mean, it isn’t at all clear why people 

bother to say, “cute little puppy,” at all, let alone why it is that they do so with quite amazing 

consistency. 

 

If language is seen as an informative, discriminatory process, and if the distribution to which 

people have been exposed is seen as a source code, on the other hand, then the reason why 

people say things like, “cute little puppy,” becomes apparent: not everything is cute, little, or a 

puppy, and thus “cute little puppy,” is a communicatively efficient way of communicating about 



puppies, since these adjectives iteratively reduce uncertainty in messages about puppies. In the 

same vein, it makes more sense for someone rummaging in a refrigerator to ask if a guest would 

like “a cold beer” rather than a “crisp beer” (even though it should be obvious that if the beer is 

in the fridge, it is going to be cold, and even where the beer in question is a particularly crisp 

little brew) because “cold beer” is highly conventionalized in English (in the 400+ million word 

COCA corpus, Davies, 2009, cold and beer have a Mutual Information of 6.59) whereas “crisp 

beer” is not (there are no instances in the 410 million word sample in COCA).  Thus, by saying 

“cold beer,” the host will increase the likelihood that her guest is able to understand her, and the 

chances, too, that she will not have to repeat herself. “Cold,” in this context, is semantically 

redundant but highly informative, and we would suggest that it may not take too much of a leap 

to see how this kind of usage, when highly conventionalized, could grammaticalize over time, 

leading to the perplexing system so hilariously (and unfairly) lampooned by Twain. 

 

These examples show how in a communication system, meaning will be shared to the degree that 

predictions are shared. The communication of meaning can thus be seen as a process of aligning 

a speaker and a listener’s predictions (see also Davidson, 1986; Pickering & Garrod, 2007; 

Garrod & Pickering, 2009). Successful communication is a process of reducing uncertainty in a 

listener’s predictions as an utterance or dialog unfolds. We should note, that “predicting,” does 

not mean “predicting with certainty.”  From this perspective, understanding is inherently 

probabilistic: when the degree of prediction is too low, little communication is occurring, and the 

listener is likely confused; when prediction is too high, communication is occurring, however, 

the listener is likely deeply bored. 

 

If human communication involves predicting signals—and I have outlined many reasons for 

assuming that it does—then meaning is something that a speaker elicits in a listener simply by 

engaging the listener in a game of prediction. In this game, signals aren’t used to convey 

meaning, but rather are used to reduce a listener’s uncertainty about a speakers’ intended 

message (Shannon, 1948).  In order for a listener to predict a speaker, the listener has to activate 

the same semantic cues to the signal as the speaker, such that the listener comes to understand an 

utterance by thinking about that utterance in a way that converges on that of the speaker. This 

proposal has much in common with the idea that language is a form of joint action (see, e.g., 



Wittgenstein, 1953; Quine, 1960; Pickering & Garrod, 2007; Garrod & Pickering, 2009; 

Tanenhaus & Brown-Schmid, 2008; Altmann & Mirkovi#, 2009; Gennari & MacDonald, 2009); 

it differs only in that it explicitly frames communication as a systematic, information-based 

process. A proper understanding language in terms of information may involve a reassessment of 

what human communication involves, and it will certainly require a large revision of our theories 

of language and its role in culture (Wittgenstein, 1953; Quine, 1960; Tomasello, 1999, 2003; see 

also Fodor, 2000); it will change, and may well help the way we talk to one another, and the 

ways in which we collaborate to make meaning. 
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