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ABSTRACT

The lore is that standard information theory provides an analysis of information quan-

tity, but not of information content. I argue this lore is incorrect, and there is an adequate

informational semantics latent in standard theory. The roots of this notion of content can

be traced to the secret parallel development of an information theory equivalent to

Shannon’s by Turing at Bletchley Park, and it has been suggested independently in

recent work by Skyrms and Bullinaria and Levy. This article explicitly articulates the

semantics latent in information theory and defends it as an adequate theory of informa-

tion content, or natural meaning. I argue that this theory suggests a new perspective on

the classic misrepresentation worry for correlation-based semantics.
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1 Introduction

The locus classicus for information theory is Shannon’s ([1948]) ‘Mathematical

Theory of Communication’. Shannon considered the problem of how much

redundancy a communication channel needs to ensure uncertainty about the

signal stays below an acceptable threshold. In order to analyse this problem,

Shannon modelled the source of the signal as an ergodic Markov process and

measured the uncertainty in that process by the weighted average of the log

probabilities of each symbol, or ‘entropy’. This way of conceptualizing the

task of information theory motivated Shannon’s ([1948], p. 379) remark that,

while such strings of symbols ‘Frequently [. . .] have meaning [. . .], [t]hese
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semantic aspects of communication are irrelevant to the engineering problem’.

Thus, the lore that Shannon’s theory provides no apparatus for analysing

information content was born.

Yet Shannon’s was only one of two parallel endeavours to mathematically

analyse information. A formal apparatus analogous to Shannon’s had already

been developed independently at Bletchley Park by Turing and colleagues in

their daily attempts to crack the Enigma code. While much of the maths was

the same (in particular, the appeal to log probabilities as the measure of in-

formation, Good [1979]), the goal of Turing’s project was radically different,

namely to infer from an opaque string of symbols its intended meaning and,

more generally, the Enigma machine settings encoding all German messages

that day. Thus, whereas Shannon’s project was unconcerned with meaning per

se, Turing’s was focused on meaning above all else—not the logician’s strict

notion of meaning as binary truth conditions, but rather meaning in the sense

of significance, or ‘weight of evidence’, of a signal in favour of one possible

interpretation as opposed to others. More recent work suggests that this meas-

ure of significance may be transformed into a recognizable semantics.

The goal of this article is to motivate a theory of information content

derived entirely from the standard information theory of Shannon and

Turing. This semantics is suitable as an analysis of the content of natural

signs, or the ‘natural meaning’ of Grice ([1957]). Intuitively, some events

convey information about others, and may be interpreted as signs that these

other events obtain; for instance, ‘smoke is a sign of fire’, and thus from

observed smoke, we may safely infer the presence of fire. Grice pointed out

that we often speak of this relationship as one of meaning—‘those dark clouds

mean rain’—yet this natural meaning has different properties from the non-

natural, or conventional, meaning familiar from the study of language. The

question of whether natural meaning is meaning in a strict or merely meta-

phorical sense is a vexed one, discussed further in Section 2, which serves to

position this project against others in the literature. In brief, the attitude

adopted here is that natural and conventional meaning are ‘species of a

common genus’ (Barwise and Perry [1983], p. 16), that the theory of informa-

tion content on offer is a probabilistic alternative to, but not competitor with,

so-called ‘semantic’ theories of information (STI; for example, Dretske [1981];

Floridi [2004]), and that it constitutes a true semantics in the sense that it

exhibits the formal features constitutive of any semantic theory.

The basic semantic model is introduced in Section 3; I claim that informa-

tion content may be exhaustively represented by a vector of log probability

ratios, or ‘s-vector’. The s-vector encapsulates in a single formal object the

complete significance of a signal or event—intuitively, what it ‘says about the

world’—and in this sense constitutes an analysis of the event’s natural mean-

ing. The remainder of the article aims to justify s-vector semantics and
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elaborate its consequences. Section 4 examines the close connection between

meaning and inference, rehearsing the conceptual argument for s-vector se-

mantics offered by Skyrms ([2010]). Section 5 argues that the work of

Bullinaria and Levy ([2007], [2012]) empirically validates s-vector semantics

by demonstrating it outperforms other correlation-based models of content on

semantic tasks. This research suggests a new perspective on the relationship

between natural and conventional meaning in language; in brief: words bear

natural meaning about other words, and, though it is not equivalent to the

conventional meaning they bear about the world, this natural meaning never-

theless determines some of their paradigmatically semantic features. These

considerations lead naturally to the final section of the article, which addresses

the problem of error for information-based semantics. I argue that (potential)

violations of the ergodicity assumption on which information theory is

founded suggest a novel route toward the naturalization of misrepresentation.

2 From Correlation to Meaning

Philosophical theories of meaning typically address two types of question:

first, what contents should be assigned to a set of meaning-bearing elements;

second, in virtue of what do these elements bear the contents they do (Speaks

[2016]). The theory offered here assumes an answer to the second question in

order to offer an answer to the first. In particular, Shannon information is

defined in terms of a probability distribution over events, and thus it is in

virtue of patterns in this distribution, in particular statistical correlations, that

some events bear content about others. Such correlation-based semantics face

several conceptual challenges, and this section briefly considers some of the

issues at stake, situating the present project with respect to previous work.

Since at least Dretske ([1981]), philosophers have taken Shannon’s admon-

ition that ‘meaning [is] irrelevant’ in information theory to imply that the

mathematics of information requires a supplementary formal system to

serve as its semantics. These STIs borrow methods from logic to characterize

information content in a manner readily identifiable as propositional. One

common strategy, for instance, captures the insight that information reduces

uncertainty by treating information content as a set of possible worlds, and

information update as changes to the set of worlds available (for example,

Dretske [1981]; Floridi [2004]; van Benthem [2011]). A second strategy treats

information content as a gappy proposition, filled in by context or back-

ground knowledge (for example, situation semantics: Barwise and Perry

[1983]; Israel and Perry [1990]). Although they differ in formal specifics,

STIs share commitments that contrast helpfully with the view developed here.

Combined with Grice’s distinction between natural and non-natural mean-

ing, the STI programme motivates a three-fold categorization of information.
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Piccinini and Scarantino ([2011]) helpfully articulate this as a distinction be-

tween Shannon (‘non-semantic’), natural semantic, and non-natural semantic

forms of information. The first obtains whenever the preconditions of

Shannon’s theory are met, that is, a sequence of events or signals may be

modelled by an ergodic Markov process; the second obtains when events

are assigned a meaning by an STI, yet the relationship between these events

and those they indicate is determined by facts about the world, typically causal

or lawlike (Dretske [1981]), or robust correlations within a circumscribed

spatiotemporal domain (Millikan [2004]). Semantic non-natural information

does not depend on nomic or statistical dependence between signal and sig-

nified, but rather on a relationship established by convention, learning, or

evolutionary process (Piccinini and Scarantino [2011], Section 4.2).

If, however, there is a semantics latent in Shannon’s theory, as argued

below, then whenever Shannon’s preconditions are satisfied, the events or

signals that satisfy them are meaningful. Thus, the distinction between ‘nat-

ural semantic’ information and Shannon information is not best understood

as that between meaningful (‘semantic’) and meaningless information, but

rather between information meaningful in one sense (that of STIs), and that

meaningful in a different sense (that of s-vector semantics). This perspective

agrees with the taxonomy of Piccinini and Scarantino, acknowledging three

distinct, progressively more semantically robust types of information, but

disagrees with their conclusion that the weakest of these is not meaningful

at all. In support of their conclusion, Piccinini and Scarantino rightly point

out that the set of elements over which Shannon’s theory is defined need not be

semantic in the sense of ‘stand[ing] for anything’ outside of that set (p. 19).

However, if the preconditions of Shannon’s theory are satisfied, then these

elements stand in stable correlation relations with each other, and thus convey

meaning about other elements in the set. This ‘internal’ meaning, meaning in

one signal about other signals, was critical for Turing’s project at Bletchley

Park; furthermore, it seems an appropriate notion of meaning for natural

signs, which are themselves merely elements in a set of correlated natural

events that convey information about each other.1

Nevertheless, Piccinini and Scarantino’s presentation highlights two tech-

nical challenges for any attempt to ground content in correlation; these

1 Arguably, all three notions of content are important for decoding an Enigma message. The

ultimate target is the conventional meaning of the original German message; in order to uncover

it, however, the observed, coded string of symbols is taken to bear natural (STI) meaning about

the original message (because their relationship is determined by the lawlike process of Enigma

encoding, and thus subject to binary truth conditions). In order to determine the Enigma

settings for the day, however, symbols within the coded message must be taken as bearing

natural (s-vector) meaning about other symbols, as this internal meaning supports inferences

about the underlying correlational structure within the pseudorandom string (cf. Sections 4

and 5).
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challenges correspond to two asymmetries in our intuitive understanding of

meaning. First, semantic analysis presupposes an asymmetry between signifier

and signified: aboutness, reference, representation, and other semantic rela-

tions are constitutively directional—‘dog’ refers to furry, tail-wagging quad-

rupeds, but those quadrupeds themselves do not likewise refer to ‘dog’. Yet

typical measures of correlation (the Pearson correlation coefficient; mutual

information) are symmetrical; if correlation is to serve as a basis for content,

some asymmetrical, directed relationship must be derived from this appar-

ently symmetrical one. Second, and more generally, we typically assign se-

mantic content to specialized objects (words, signals, and so on), not to all

possible events. Yet correlations are defined over a homogeneous set of elem-

ents, and thus any assignment of content grounded entirely in correlation

would seem to assign contents indiscriminately—not only to events typically

understood as meaningful, but to all events. As discussed below, the theory

presented here exhibits the first asymmetry, between signifier and signified,

and may model the second, between those events that bear meaning and those

that do not.

A more subtle issue for theories of natural meaning is the question of

‘factivity’. Grice argues that it is inconsistent to assert both ‘those clouds

mean rain’ and ‘nevertheless, it won’t rain’.2 More generally, he has been

interpreted as demonstrating that, if x naturally means y, then if x obtains,

y must obtain. Others have taken factivity to be a conceptual condition on the

notion of information, that is, x may only bear the information that y if in fact

y (Israel and Perry [1990]; Floridi [2007]). However, this view is in tension (on

the one hand) with the idea that natural meaning supervenes on correlations,

since these are inherently probabilistic, and thus (apparently) x may bear the

(Shannon) information that y is probable, and yet y not in fact obtain. It is in

tension (on the other) with the project that has motivated much discussion of

natural meaning, that of naturalizing meaning tout court. If signals bearing

non-natural meaning may be tokened in error—I may assert ‘McKinley was

the twenty-eighth president’ when in fact he was the twenty-fifth—yet natur-

ally meaningful signals may not, then it seems that this ‘problem of error’

poses a significant barrier to any attempt to reduce non-natural meaning to

natural meaning.3 The perspective taken here is that natural meaning may

supervene on probabilistic relations without violating factivity; nevertheless,

I believe that s-vector semantics sheds new light on the prospects for a

2 As a conclusion about the concept of natural meaning in ordinary language, Grice’s claim is not

unassailable (Hazlett [2010]; Isaac [2010], pp. 132–40).
3 Historically, this problem motivated the shift toward teleological strategies for naturalizing

content (Millikan [1984]; Dretske [1988]), although debate continues about the extent to

which teleosemantics itself relies on patterns of correlation in the environment (Shea [2007]),

provides a satisfactory account of misrepresentation (Fodor [1990]), or, indeed, addresses the

problem of naturalizing semantics at all (Godfrey-Smith [2006]).
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naturalistic account of signal error. This contentious topic is discussed further

in Section 6.

In the face of disagreement about whether vehicles of information are ve-

hicles of meaning, and whether they may be tokened in error or not, by what

lights may I claim that the theory on offer here should be understood as

properly semantic? I take the constitutive feature of a semantics to be that it

assigns a unique, evaluable formal object to each element in a set that char-

acterizes all and only the content conveyed by that element—intuitively, what

it ‘says about the world’. S-vector semantics provides this for any set of events

that satisfies the formal preconditions for Shannon information, just as the

formal semantics developed in logic and linguistics provide it for paradigmat-

ically meaningful symbol systems. Some (including many proponents of STIs)

have insisted that content must be propositional, but I take this requirement to

be essentially vacuous if it is understood as requiring anything stronger than

that semantic objects be evaluable (as s-vectors are).4 Finally, as elaborated

below, the theory on offer supports solutions to meaning-requiring tasks, such

as determination of semantic categories in a natural language, or effective

inference about the true state of the world. I take these features to empirically

validate s-vector semantics as an analysis of meaning proper.

3 S-Vector Semantics

Shannon’s theory of information presupposes that a sequence of signals or

events may be modelled by an ergodic Markov process; this amounts to the

claim that their statistical behaviour may be captured by a stable joint prob-

ability distribution. Given this joint distribution, we want to assign a unique

formal object to each event that characterizes the information that event con-

veys (what it ‘tells us about the world’). This section elaborates the idea that

the information conveyed should be identified with the change in information

conditional on the event; in the words of Skyrms ([2010], p. 34), how it ‘moves

the probabilit[ies]’. The formal object that encapsulates this change in infor-

mation is the vector of log probability ratios, which I call an s-vector.5 After

motivating the idea that log probability ratios characterize the information

4 This is because there is no consensus metaphysics of propositions that substantively constrains

the notion of propositional content as more than just conveying a state of the world (cf.

Haugeland’s ([1998/1991], p. 191) related discussion of the impotence of possible worlds se-

mantics for distinguishing between types of content. Skyrms ([2010], p. 42) asserts that prop-

ositional content is really just a ‘special case of the much richer information-theoretic account of

content’ modelled by s-vector semantics; while Birch ([2014]) disputes this claim, I take it that

the real issue in that debate is whether s-vectors are evaluable, and thus may subvene the pos-

sibility of misrepresentation.
5 The ‘s’ in ‘s-vector’ may be taken to stand for ‘Shannon’, on whose theory it is based, ‘Skyrms’,

who explicitly defends this version of information semantics, or ‘semantic’, as Bullinaria and

Levy call this same construct a ‘semantic vector’ (Isaac [2010]).
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one event carries about another, I introduce the s-vector as the natural gen-

eralization of this idea. The section concludes with some basic features of

s-vector semantics as an analysis of natural meaning, defending the claim

that it exhibits the asymmetry between signifier and signified we intuitively

expect from a theory of meaning.

Consider a finite probability space h�;A;Pi, where � is a finite set, A is an

algebra over �, and P is a probability distribution over A. An algebra is a

family of subsets closed under complement and union, that is, e 2 A implies

e#�; if e 2 A, then�e 2 A (where�e ¼ �� e); and if e1; e2 2 A, then e1 _ e2

2 A (where e1 _ e2 ¼ e1 [ e2). It follows that e1 & e2 ¼ e1 \ e2 is also in A, as

e1 & e2 ¼ � �e1 _ �e2ð Þ 2 A.

A is interpreted as the set of possible events; –e is the event incompatible

with e; and e1 & e2 is the event of e1 and e2 occurring together. The probability

distribution P characterizes the correlations between events. To make contact

with relevant discussions by Skyrms, Bullinaria and Levy, Good, and

Shannon, I’ll typically treat P as a summary of long-term relative frequencies.

In principle, however, the apparatus developed here is compatible with other

philosophical analyses of probability, for instance as propensities or subjective

degrees of belief. Shannon’s theory takes the existence of a joint probability

distribution as a precondition for information, but it is indifferent to the origin

or philosophical interpretation of the underlying probabilities.

Given just the probability measure P, we’d like to characterize the infor-

mation one event in A conveys about another. First, however, let’s consider

the measure of information quantity in a single event, call it I; we’d like I(e) to

satisfy several intuitive properties.

(1) If P(e) ¼ 1, then the quantity of information provided by e is zero,

that is, I �ð Þ ¼ 0;

(2) All possible events contain positive information, that is, I eð Þ � 0 for

all e 2 A;

(3) An impossible event conveys infinite information, that is, P(e) ¼ 0

implies I eð Þ ¼ 1.

Furthermore, if events e1 and e2 are statistically independent, then we’d like

the information conveyed by the joint event e1 & e2 to simply add up the

information conveyed by the two events separately.

(4) The information in independent events sums, that is,

P e1 & e2ð Þ ¼ P e1ð ÞP e2ð Þ implies I e1 & e2ð Þ ¼ I e1ð Þ þ I e2ð Þ.

A function that satisfies these constraints is the negative log of the probability

(independent of choice of base):

I eð Þ ¼ � log P eÞ:ð
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This function captures our intuitions that the lower the probability of an

event, the more information it contains; the certain event contains no infor-

mation; as an event approaches impossibility, its informational value grows

exponentially; and if two unrelated events occur, we gain the complete infor-

mation from each of them. It turns out that any decreasing function of P that

satisfies Condition 4 will also satisfy Conditions 1–3 and be proportional to

the negative log; this result confirms the choice of I as the measure of infor-

mation in an event (Osteyee and Good [1974]). This is the formal notion of

information that underlies Shannon’s entropy measure, which is just the

weighted average of the information quantity of each event in a partition of

A, for example, for ei 2 �,

H ¼ �
X

i

P eið Þ log P eið Þ ¼
X

i

P eið ÞI eiÞ:ð

Now, for any two events e1; e2 2 A, what information does e1 convey about

e2? We can reconceive this as a quantitative question: How does e1 change our

information about the possibility of e2? This question was conceived by Turing

(as channelled by Good [1950], [1979]) as the question: How does the ‘evi-

dence’ e1 affect our assessment of the ‘hypothesis’ e2? Turing and Good take

this to be the log ratio between the probability of e2 given e1 and the prior

probability of e2. The basic idea is that subtracting the information in e2, given

e1, from the prior information in e2, measures the change in information about

e2, that is, the information about e2 conveyed by e1
6:

I e1 : e2ð Þ ¼ I e2ð Þ � I e2je1ð Þ ¼ � log P e2ð Þ þ log P e2je1ð Þ ¼ log
P e2je1ð Þ

P e2ð Þ

This definition has the intuitive features we want in a measure of information

conveyed by one event about another:

(1) If P e2je1ð Þ ¼ P e2ð Þ, then e1 conveys nothing about e2, and

I e1 : e2ð Þ ¼ 0;

(2) As P e2je1ð Þ grows larger than P e2ð Þ, e1 conveys more information in

favour of e2 occurring, and I e1 : e2ð Þ grows more and more positive;

(3) As P e2je1ð Þ shrinks smaller than P e2ð Þ, e1 conveys more information

against the occurrence of e2, and I e1 : e2ð Þ grows more and more

negative.

6 Strictly speaking, when presenting this definition, Good conceives of e1 as the hypothesis and e2

as the evidence; however, the two expressions are equivalent:

Pðe2je1Þ

Pðe2Þ
¼

Pðe2je1ÞPðe1Þ

Pðe2ÞPðe1Þ
¼

Pðe2 & e1Þ

Pðe2ÞPðe1Þ
¼

Pðe1je2ÞPðe2Þ

Pðe2ÞPðe1Þ
¼

Pðe1je2Þ

Pðe1Þ
:

Here I give the version that conforms with later discussion (cf. Skyrms [2010], p. 35, footnote 4).
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Finally, since Shannon’s theory makes no assumptions about the relationship

between e1 and e2 other than the correlation given by the probability distri-

bution P, I characterizes the complete information about e2 conveyed by e1.

I measures the information content in one event about another, but what is

the total information content of an event? We want a single, unique formal

object that captures the information e conveys about all possible events

(everything it ‘says about the world’). One strategy is simply to collect these

separate pieces of information content into a single object that nevertheless

keeps them distinct: for instance, a vector. Since A is finite, we can index it by

the natural numbers, and use this enumeration to characterize the full content

� of e with the ‘s-vector’ n eð Þ:

n eð Þ ¼

*
log

P e1jeð Þ

P e1ð Þ
; log

P e2jeð Þ

P e2ð Þ
; log

P e3jeð Þ

P e3ð Þ
; . . .

+
:

n eð Þ is the basic semantic object implicit in standard information theory,

encapsulating the total information content of the event e.

The central claim of s-vector semantics is that e means n eð Þ (in the natural,

informational sense). At first blush this might seem counterintuitive—a vector

of real numbers is simply not the sort of thing that signals or events might

mean. But this is to confuse the formal object with our interpretation of it (as

information semanticists). To compare, STIs identify the meaning of a signal

with a set of ‘worlds’; however, from a formal standpoint, this is just a math-

ematical object, a set of arbitrary abstract elements. The semanticist interprets

these elements as possible states of the world. Likewise, while formally an

s-vector is just an ordered array of real numbers, the s-vector semanticist

interprets these numbers as changes in the probabilities of the events e1, e2,

e3, and so on

To illustrate the features of s-vector semantics, consider how it handles a

typical example of natural meaning, the claim that smoke is a sign of fire. S-

vector semantics presupposes a joint probability distribution over a set of

events including both smoke and fire. At the slot in the vector n smokeð Þ cor-

responding to log P firejsmokeð Þ=P fireð Þ, there will be a relatively large

number, indicating the dramatically increased probability of fire given

smoke over the prior probability of fire, that is, that smoke ‘means’ fire. Yet

smoke will mean other things as well: there will also be large values at slots in

n smokeð Þ corresponding to the events danger and low visibility. In contrast,

events like thunderstorm may correspond to slots with very low negative

numbers, indicating their probability has decreased dramatically. In keeping

with the spirit of an informational semantics, the content of n smokeð Þ will
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depend upon contingent statistical features of the environment: in a world

with constant fire, and only occasional smoke, smoke will not mean fire.

Unlike a naı̈ve approach to deriving content from correlation, which iden-

tifies the content of one event directly with the (set of) event(s) with which it is

(strongly) correlated, s-vector semantics exhibits the asymmetry we expect

from a proper theory of meaning. Events are bearers of information, but

they are not themselves meanings. On this view, it is neither events, nor

even probabilities of events, but changes in the probabilities of events that

are conveyed by (are the content of) a meaningful event. So, while e means

n eð Þ, that is, a change in the probability distribution over possible ways the

world might be, n eð Þ does not ‘mean’ e, since it is not itself a bearer of meaning,

as desired.

The sense in which s-vector semantics is most clearly analogous to our intui-

tive understanding of meaning, for instance in natural language, is that it sup-

ports a graded synonymy relation. If e1 and e2 are very close in meaning (‘say’

very similar things about the state of the world), then n e1ð Þ and n e2ð Þ will be

geometrically ‘close’ by any plausible measure of vector distance. Dark clouds

and low pressure both mean rain; correspondingly, their respective s-vectors

will fall close together.7 As e1 and e2 approach complete antonymy (convey

maximally incompatible states of the world), their corresponding meanings

approach n e1ð Þ ¼ �n e2ð Þ.
8 Note, however, that antonymy is not the same as

negation: e1 ¼ �e2 does not in general imply that n e1ð Þ ¼ �n e2ð Þ. The reason

for this is that the value of n eð Þ depends on the correlation between e and other

possible events; however, the correlation between e1 and ei may not be inversely,

or even systematically, related to the correlation between �e1 and ei. If we find

out that the die came up two, we learn with certainty it came up even, but if we

learn the die did not come up two, we only learn a little bit about whether it

came up even; likewise, red leaves may mean autumn, but no red leaves may not

mean much at all about autumn one way or another.

This is a particular instance of a more general feature of s-vector semantics

that distinguishes it from typical formal semantics—it is not recursively

defined. There is no general relationship between n e1ð Þ; n e2ð Þ, and n e1 & e2ð Þ;

this is because the degree of correlation between e1 and e2 does not systemat-

ically determine their respective correlations with other events, yet these cor-

relations are what determine the relevant s-vectors. This is a straightforward

consequence of taking informational content to be determined by a joint

probability distribution: since we cannot derive P eije1ð Þ from P eið Þ and

P e1ð Þ, nor P e1 & e2ð Þ from P e1ð Þ and P e2ð Þ, we should not expect to be able

7 This intuition is confirmed by the results of Bullinaria and Levy, as discussed in Section 5.
8 The negation of a vector is equivalent to the negation of each element within it. Geometrically,

�nðeÞ points in the opposite direction from nðeÞ.

Alistair M. C. Isaac10

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/advance-article-abstract/doi/10.1093/bjps/axx029/4092772 by H

ealth Sciences Library System
 user on 27 Septem

ber 2018

Deleted Text: i.e.
Deleted Text: <sup>7</sup>
Deleted Text: <sup>8</sup>


to derive n e1 & e2ð Þ from n e1ð Þ and n e2ð Þ. Instead, s-vectors must be defined

directly in terms of the joint probability distribution, as this is where the

relevant correlations are encoded. If s-vectors are not recursively defined,

does that mean they do not constitute a ‘semantics’? To conclude as such

would constitute a kind of logico-chauvinism, insisting all theories of meaning

must conform to one particular style of formal analysis; such chauvinism

would not only rule out s-vector semantics, but also other heterodox theories

of meaning, for instance holism or contextualism.

4 Meaning for Inference

What of the second asymmetry discussed above? We typically only assign

meanings to some events, not all of them. S-vector semantics has the appar-

atus to model this asymmetry, by treating the set of events over which the joint

probability distribution is defined as sorted into two subsets (intuitively:

‘signs’ and ‘signifieds’). The motivation for this sorting comes in part from

considerations about how meaningful events or signals are used, namely to

support effective inferences about the world. Acknowledging the role of mean-

ing in supporting inference also confirms the formal specifics of the s-vector,

which semantically mirror a prominent theory of probabilistic inference, the

minimization of Kullback–Leibler divergence.

Skyrms ([2010]) develops an account of the evolution of signalling systems

between simple agents, proposing the s-vector as a representation of signal

content. His view displays the second semantic asymmetry: signals convey

information about other events, but they are not themselves events of seman-

tic interest, that is, they are vehicles, but not topics, of communication.

Skyrms takes his analysis of content to be motivated by the use to which

signals are put—receivers use them to predict the state of the world, so the

correct theory of signal content is the one that specifies the exact inferences a

signal supports. Furthermore, this point holds equally for natural signs: we

take smoke to be a sign of fire precisely because we can safely infer the exist-

ence of fire from smoke, and an adequate analysis of natural meaning should

explain how it supports such inferences.9

Skyrms’s vector is defined by the log ratio between two probability distri-

butions: the prior distribution over states of the world, and the posterior

distribution over states of the world, conditional on the signal received. The

basic model introduced above may easily be refined to accommodate this

interpretation by treating � as sorted into two types of primitive event:

9 The role of natural signs in supporting inferences about the world has been emphasized recently

in the literature on probabilistic theories of information (for example, Scarantino and Piccinini

[2010], p. 318; Stegmann [2015], Section 4).
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states of the world W and signals S, such that � ¼W [ S. Then the content of

each si 2 S is given by the vector

n sið Þ ¼

*
log

P w1jsið Þ

P w1ð Þ
; log

P w2jsið Þ

P w2ð Þ
; log

P w3jsið Þ

P w3ð Þ
; . . .

+
;

for all wj 2W .

This sorting of events into two types is also a powerful tool for modelling

the content of natural signs. Prototypical examples of natural signs ‘a means b’

are such that a is perceptually salient, while b is an event of great importance.

For instance, smoke is easy to spot from a great distance, or by smell as well as

sight, while fire is an event of great importance due to its potential danger and

destructive force. Examples like ‘these spots are a sign of measles’ are even

more pronounced: spots are a very easy to see external property, while measles

is completely hidden from our regular sensory apparatus, yet a matter of grave

concern. We could model this asymmetry by splitting the set of correlated

natural events into those that do the natural signing (smoke, spots) and those

about which information is conveyed (fire, measles), in complete analogy with

Skyrms.

While it is useful to model this apparent asymmetry in paradigmatic cases of

natural meaning, it is important to emphasize that the semantic homogeneity

of the general s-vector account, which treats every event type as a potential

bearer of content, should be considered a feature, not a bug. The information-

theoretic perspective on natural meaning is egalitarian about information

content: ‘The world is full of information’ (Skyrms [2010], p. 44). It is only

when organisms use the information available in nature, by detecting some

events with their perceptual organs, and responding to other events in ways

that reflect their importance for survival, that it makes sense to model corre-

lated events as sorted into signs and signifieds. The antecedent presence of

these correlations, the simple existence of natural signs, however, is the pre-

condition for this behaviour. The correlations, and thus the information, and

thus also the s-vector content, are simply present due to stable facts about the

world, independent of any organism detecting this information and using it.10

Skyrms’s ([2010], p. 42) defence of s-vector semantics emphasizes the close

formal connection between the s-vector and Kullback–Leibler (KL)

10 This point is especially vivid once we recognize that parsing the world into signs and signifieds is

both organism and context relative. Many animals use odours as signs for the presence of food,

or of a predator, yet these odours are not perceptually salient events for humans. Likewise, while

typically one is more likely to infer fire from the presence of smoke, the situation may also be

reversed: if fire is visible through the window in a fire-resistant door, I may take the fire as a sign

of smoke, and cover my face with my handkerchief before opening it (cf. Cummins et al.’s [2006]

notion of ‘unexploited content’).
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divergence, a measure for comparing probability distributions.11 Given the

probability measures P and Pe, the KL-divergence of the latter with respect to

the former is given by

D PejjPð Þ ¼
X

i

Pe eið Þ log
Pe eið Þ

P eið Þ
:

When Pe �ð Þ ¼ P �jeð Þ, D is just a weighted average over the components of

s-vector n eð Þ; this averaging erases the particular content conveyed by e in

favour of an overall measure of informational divergence of Pe from P.

Why does Skyrms take the formal continuity between s-vectors and KL-

divergence to support the claim that the s-vector is the right notion of content

for Shannon information? I take it that Skyrms implicitly appeals here to the

role of natural meaning in supporting inference. Minimizing KL-divergence is

a prominent proposal for how to infer a new probability distribution from a

prior plus evidence.12 If our intuition is that the content of e is just what it tells

us about the world, then e’s content should be equivalent to whatever we

can legitimately infer about the world from it. If the minimal KL-divergence

D PejjPð Þ identifies the optimal information state to infer from e, then it seems

to be the right measure for establishing total content, and the s-vector a legit-

imate specification of this content, insofar as it unpacks the separate informa-

tional relations KL-divergence averages over into a semantically interpretable

object. On this view, s-vector semantics inherits conceptual support from any

argument that the minimally KL-divergent distribution is exactly what can be

inferred (no more, no less) from a piece of evidence.13

I take it that Skyrms’s considerations provide conceptual support for

s-vector semantics. Insofar as minimizing KL-divergence is the optimal

theory of information-based inference, and the information content of a

signal is equivalent to what it tells us about the world (understood as the

inferences it supports), then it appears that the s-vector is the right semantic

object for Shannon information. Nevertheless, if our semantic analysis is a

purely theoretical exercise, then the s-vector is not the only notion of content

that might be derived from a joint probability distribution over events. For

instance, Godfrey-Smith ([2012], p. 1292) explores the possibility that one

might just take the content of an event to be the posterior probability over

states of the world after it occurs, concluding: ‘there is probably no need to

11 Introduced by Kullback and Leibler ([1951]), this measure is sometimes called ‘relative entropy’

or ‘cross-entropy’, as it generalizes Shannon’s H. Note that D is not symmetric—

DðP1jjP2Þ 6¼ DðP2jjP1Þ—so technically not a distance, hence the term ‘divergence’.
12 In particular, a more general proposal than simple conditionalization; if Pð�jeÞ is not well

defined, or if e only loosely constrains posterior probability, minimizing D across distributions

that satisfy these constraints determines a unique Pe.
13 For explicit arguments to this effect see, for instance, (Jaynes [1957]) or (Shore and Johnson

[1980]); for relevant surveys see (Domotor et al. [1980]) and (Csiszár [2008]).
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choose one view, saying that such-and-such is the content’. While I agree with

the spirit of Godfrey-Smith’s remarks, I think there are good reasons to single

out the s-vector account once one considers the practical applications of a

theory of information content; in particular, the s-vector outperforms other

representations of content on semantic tasks, the topic of the next section.

5 Natural Meaning of Conventional Symbols

Skyrms is the first to defend the s-vector as an analysis of content in the

philosophical literature; however, essentially the same theory of content ap-

pears earlier in (Bullinaria and Levy [2007]). Bullinaria and Levy participate in

a research programme that attempts to compute semantic representations

from word co-occurrence statistics, testing the validity of these representations

on semantic tasks. For instance, given a large corpus, can we derive a repre-

sentation of the meaning of the word ‘hypothesize’ from just the relative

frequencies of words appearing before (and–or) after it? Can we use this rep-

resentation to determine whether, say, it is more similar in meaning to ‘posit’

or ‘subjugate’? It turns out that the representation that performs best on se-

mantic tasks like this is the s-vector, a result I take to offer a kind of empirical

validation of s-vector semantics.

One might find this result puzzling at first, as words paradigmatically bear

conventional meaning, yet I have explicitly offered s-vector semantics as a

theory of natural meaning. Whenever a set of items stand in stable probability

relations, however, they provide natural meaning about each other that may

be characterized by an s-vector. Since words within a corpus do stand in stable

probability relations to each other, they convey natural meaning about each

other in addition to their conventional meaning. What is surprising about the

results discussed here is that the natural meaning words bear about each other

in a corpus turns out to be sufficient to solve some semantic tasks typically

conceived of as involving conventional meaning. This is good news for nat-

uralistic theories of language acquisition, as it shows that basic semantic re-

lationships may be extracted from a set of words by reinforcement on their

correlations. It should be unsurprising to cryptographers, who have relied on

the correlation-based information in some parts of a conventionally meaning-

ful text about other parts for thousands of years of code making and breaking.

Nevertheless, it is important to emphasize that Bullinaria and Levy and their

peers do not pretend that the natural meanings of words extracted from a

corpus are equivalent to their full conventional meanings. Rather, they are

only able to extract ‘some aspects of word meaning’ that they posit might

‘form a computationally efficient foundation for the learning of semantic rep-

resentations’, perhaps through supervised learning and more elaborate forms

of human interaction (Bullinaria and Levy [2007], p. 510).
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Since the task of collecting and manipulating word co-occurrence statistics

is computationally demanding, research in this field initially proceeded on the

basis of a priori assumptions about (a) how large or small a contextual window

of co-occurring words around the target to consider; (b) how to represent the

results of the collected statistics; and (c) what measure of distance between

these representations captures degree of semantic ‘similarity’. What distin-

guished Bullinaria and Levy’s ([2007]) study at the time was that it treated

these as empirical questions.14 By systematically varying the size of the con-

textual window that determined their co-occurrence statistics, the manner in

which those statistics were represented, and the distance metric between rep-

resentations, they were able to generate a wide number of different semantic

representations, which they then tested on a variety of semantic tasks, such as

semantic categorization, syntactic categorization, and synonymy questions

from the Test of English as a Foreign Language. Scoring each combination

of answers to the three questions on these tests allowed them to empirically

determine the optimal semantic representation.

The optimal answer to question (b), the best way to represent co-occurrence

statistics for semantic tasks, is as a vector of positive Pointwise Mutual

Information (PMI); PMI simpliciter is exactly the same measure as Good’s I.

Bullinaria and Levy first determined a measure of co-occurrence statistics P,

were P(w) is just the number of occurrences of the word w divided by the total

number of (token) words in the corpus; the relative frequency of a word w given

it appears within the window of co-occurring contextual words around a target

word t, P wjtð Þ, is just the number of times w appears with t divided by the total

number of appearances of t. Then the PMI ‘semantic vector’ representing the

meaning of a target word t with respect to all potential context words in the

corpus, ci, is given by*
log

P c1jtð Þ

P c1ð Þ
; log

P c2jtð Þ

P c2ð Þ
; log

P c3jtð Þ

P c3ð Þ
; . . .

+
;

that is, identical with n tð Þ (pp. 513–14).

Strictly speaking, of all the representations Bullinaria and Levy considered,

the PMI vector did worst, while a slight modification of it, the positive PMI

vector did best. The positive PMI vector simply replaces all negative-valued

components of a PMI vector with zeros. Essentially, PMI simpliciter per-

formed poorly on semantic tasks because very large negative components

ensured that some words that should have been judged semantically close

were measured as far apart; in the words of Bullinaria and Levy: ‘Negative

14 This potted history is based on discussions in the session ‘Lexical Semantics: Bridging the Gap

between Semantic Theory and Computational Simulation’, at which Bullinaria was an invited

speaker, organized by M. Baroni, S. Evert, and A. Lenci at the European Summer School for

Logic, Language, and Information, 4–8 August 2008, Hamburg.
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values indicate less than the expected number of co-occurrences, which can

arise for many reasons, including a poor coverage of the represented words in

the corpus’ (p. 514). I think this result should still be interpreted on balance as

constituting empirical support for the s-vector analysis of information con-

tent. Recall that Shannon’s theory assumes ergodicity in the information

source—this means that in the long term observed statistics will match

stable underlying probabilities in the source. The need for positive PMI

here, as Bullinaria and Levy acknowledge, is thus due simply to a discrepancy

between the assumption of the ideal theory, that observed frequencies match

underlying probabilities, and the reality of small data sets. In fact, when tested

on an even smaller data set than that initially considered, all Bullinaria and

Levy’s semantic measures did worse, but the positive PMI outperformed its

competitors by an even greater margin.

I take this result, the empirical success of positive PMI vectors on a variety

of semantic tasks, to provide a kind of pragmatic validation of the claim that

s-vector semantics captures an important notion of information content.

Nevertheless, there are significant open questions about the exact implications

of this research for a theory of natural meaning. The approach of Bullinaria

and Levy is that of the engineer—use whatever achieves results for the task at

hand—but an engineering solution does not always conform to our theory-

based expectations. In this case, there is some question about the exact sig-

nificance of the most effective distance measures between semantic vectors.

Bullinaria and Levy found that cosine distance (as opposed to, say, Euclidean

or city block) between positive PMI vectors produced the best results. In

contrast, KL-divergence between probability distributions performed only

modestly amongst all measures considered. One might take this result as a

mark against a view such as that tentatively advanced by Godfrey-Smith

([2012]), that information content be identified with the posterior probability

given the signal, since no distance measure between vectors of posterior prob-

ability (including even KL-divergence) performed as well as s-vectors and

cosine distance. Nevertheless, the result does seem to undermine the elegant

theoretical complementarity between Kullback-Leibler inference and s-vector

representation argued in the previous section. What Bullinaria and Levy’s

results do show is that an information-based semantics may solve real-

world semantic tasks, and that optimal performance on such tasks requires

a theory very like s-vector semantics.

6 Error and Ergodicity

Do we want a semantics of information on which naturally meaningful events

may exhibit error, that is, it is possible that a content-bearing event occur, and

yet the actual state of the world not match the content it conveys? As discussed
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in Section 2, if we accept Grice’s argument that natural meaning is factive,

then it appears we do not. In contrast, if we think that meaning tout court may

be naturalized, then perhaps we do want to allow for the possibility of a

mismatch between content and world (as long as this mismatch may be ex-

plained naturalistically). After a survey of the traditional STI perspective on

factivity, error, and natural meaning, I show that (in contrast to the STI view)

it is consistent to maintain that natural meaning is purely probabilistic, and

yet that it is still, in some sense, ‘factive’. Nevertheless, I conclude by con-

sidering some ways in which s-vector content might truly fail to match the

state of the world, and thus exhibit a naturalistic form of error. The most

interesting of these confronts the possibility that Shannon’s ergodicity as-

sumption fails, suggesting a new direction for research on the problem of

error.

The typical conception of the problem of error for an informational seman-

tics (Dretske [1981]; Fodor [1984]; Godfrey-Smith [1989]), has focused on the

causal, nomic, or aetiological relationship supposedly required for informa-

tion to pass from one event to another. The intuition is that one event cannot

convey information about another, if that other event does not in fact occur.

Suppose, for instance, that smoke rises from damp, smouldering grass (for

example, during the sending of smoke signals), but there is in fact no fire—

how could such smoke, then, carry information about fire? If it did bear such

information, we could assess the smoke as misrepresenting the state of the

world, and make progress on naturalizing error. However, since it does not

stand in a causal relationship to any fire, it seems it cannot bear information

about fire in the first place. But then the puzzle becomes, how should we

distinguish this instance of smoke, which bears no fire information, from

other, fire-information-bearing instances of smoke?

As a conceptual problem for information-based semantics, this worry has

been extensively discussed for STIs. In general, typical examples of natural

signs are not in fact perfectly correlated with the events they naturally

‘mean’—sometimes there is smoke without fire. STIs rule out these cases

and ensure factivity by stipulating that information is only conveyed naturally

under certain circumstances. For instance, Dretske ([1981], p. 65) argues that s

may only bear the information content that w if P wjsð Þ ¼ 1 for some nomic

reason. For Dretske, in a world where it is possible that smouldering grass

produce smoke but not fire, smoke cannot mean fire. Millikan ([2004],

Chapter 3) develops a view on which the perfect correlation between events

required to ensure factivity obtains within a gerrymandered spatiotemporal

region (excluding, say, the smouldering grass), and sign-using organisms suc-

ceed in using natural information by ‘tracking’ these regions. Barwise and

Perry ([1983]) appeal to the role of ‘constraints’ for ensuring factivity of in-

formation; in this case the smouldering grass fails the dryness of tinder
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constraint on the informational relationship between smoke and fire. Sign-

users become ‘attuned’ to these constraints, that is, form habits to act as if they

are satisfied, and when environmental constraints change (tinder becomes

wet), they may erroneously draw inferences on the assumption of information

that is not in fact there (Barwise and Perry [1983], pp. 96–100).

S-vector semantics is not subject to the problem of error construed in this

way. To begin with, Shannon does not presuppose that information super-

venes on nomic relationships, but on a stable joint probability distribution

over events. Since Shannon’s theory is blind to whatever underlying causes

ensure the stable correlations between events, it does not have the resources to

invoke these causes when characterizing information content. Furthermore,

s-vector semantics does not equate the information content of s directly with

some state(s) of the world w, but rather with a change in the posterior prob-

ability of w. Since changes in probability are not themselves factive with

regard to states of the world (the probability of rain may increase, and yet

it not in fact rain), it seems there is no in principle barrier to the factivity of

s-vector semantics. S-vector natural content may be construed as ‘factive’ in

the sense that conveyed changes in probabilities are veridical: if s naturally

means the probability of w increases, and s occurs, then the probability of w

has indeed increased, even if w does not actually occur. A smoke event may be

caused by smouldering grass, indicate that the probability of fire has dramat-

ically increased, and yet still not be in error. This is because the change in

probability the smoke conveys is a fact about the overall statistical co-

occurrence of fire and smoke event types, and the absence of a token instance

of fire in the case of this particular smoke token does not falsify or contradict

that overall pattern of correlation. By treating information as inherently prob-

abilistic, we may avoid the arcane gerrymandering of Dretske and Millikan,

while still maintaining the spirit of factivity. This basic insight has been

extensively defended in the recent literature on probabilistic information

(Scarantino and Piccinini [2010]; Scarantino [2015]; Stegmann [2015]).

Nevertheless, it is also worth considering the possibility that s-vector se-

mantics supports a limited, naturalistic form of information ‘error’. If it does,

then it may suggest a bridge to span the gap between natural and non-natural

forms of meaning, and thereby contribute to an eventual naturalization of

misrepresentation. Skyrms ([2010], p. 75) considers the possibility that signals

bearing s-vector meaning may misrepresent the world under circumstances

where the interests of the signalling agent and the receiver are in conflict.

For instance, Photuris fireflies ‘deceptively’ send the mating signals of the

Photinus genus in order to lure Photinus firefly males, which they then eat.

This example arguably falls between natural and non-natural meaning—the

signalling behaviour of the Photuris is the result of reinforcement on correl-

ations, and supervenes on nomic patterns in the environment; nevertheless, it
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conveys ‘misinformation’ in the sense that the meaning-bearing event system-

atically occurs when its reinforced correlate for the receiver (the presence of an

actual Photinus female) does not. Since the s-vector content of the signal is

derived entirely from the joint probability distribution over signals and states

of the world, however, the signal ‘also increases the probability of a predator’;

Skyrms ([2010], pp. 76–7) concludes such ‘deceptive’ signals convey a kind of

‘half-truth’.

While Skyrms describes this example as one of ‘misinformation’, there is a

sense in which the s-vector content of the event continues to veridically match

the world, since the changes in probability it conveys do indeed match the

actual correlations in the environment: both a Photinus female and a preda-

torial Photuris are more likely to be present when the mating signal is sent. In

order for an event bearing s-vector content to truly ‘misrepresent’ the state of

the world, the change in probabilities it conveys must fail to match the true

pattern of correlations between events. Is such a mismatch possible? We’ve

seen a hint at the answer already in the discussion of Bullinaria and Levy: a

signal may misrepresent the world if Shannon’s assumption of ergodicity is

not satisfied—for instance, if the probabilities that determine its content fail to

match the probabilities that obtain when it is tokened.

Bullinaria and Levy believed that their attempt to represent content with

vectors of pointwise mutual information was unsuccessful due to a somewhat

trivial failure of the ergodicity assumption: their sample set was too small for

observed relative frequencies to match ‘true’ underlying probabilities.

Arguably, this is merely an epistemic problem—it is not that PMI semantic

vectors misrepresent the correlations between words, but rather that

Bullinaria and Levy were unable to determine the true PMI semantic vectors.

It is possible, however, that the ergodicity assumption fails for thoroughly

metaphysical reasons: underlying probabilities may simply change over time,

and thus the observed system of events may fail to be ergodic. Standard in-

formation theory, and the definition of the s-vector, presuppose that the prob-

abilistic relations between events are stable. If, conversely, correlations change

over time, then the static ratio of probabilities ‘meant’ by an event in s-vector

semantics may fail to match the ‘true’ probability ratio, and thus that event

may ‘misrepresent’ the state of the world when it occurs.

There is no off-the-shelf metaphysical framework for making sense of

standard information theory, and thus s-vector semantics, in a non-ergodic

world. Most metaphysics of information is in the STI tradition, focusing on

nomic, rather than probabilistic, metaphysical issues. The Skyrms programme

investigates signal evolution in a probabilistic world, but typically assumes

that world is ergodic. One relevant line of inquiry in this tradition has mod-

elled the repurposing of learned signals to new aspects of the environment

(Barrett [2014]), a problem arguably analogous to that of tracking changes in
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observed correlations. In machine learning, some studies have directly exam-

ined strategies for probability matching when causal structure may change

and ergodicity is only local (for example, Kummerfeld and Danks [2013]).

Nevertheless, a full analysis of this problem, and thus of the problem of

error as it applies to s-vector semantics, remains a project for the future.

7 Conclusion

Contrary to popular lore, there is a theory of meaning latent in standard,

Shannon information theory: s-vector semantics. Since s-vector semantics

rests on the same preconditions as Shannon’s theory, it applies whenever a

set of events stand in stable correlations with each other. A slogan here might

be: where there is information, there is information content. This view con-

trasts with those that endorse the possibility of ‘non-semantic’ information in

name, but not in spirit. It agrees that there may be true information that does

not bear ‘semantic content’ as defined in the STI tradition, but it claims this

information does bear a weak form of content, the content that signals or

events in a correlated set convey about each other. S-vector semantics is never-

theless a true semantics, both in the intuitive sense that it assigns a unique

semantic object to each event that encapsulates all that it ‘says about the

world’, and in the pragmatic sense that it solves paradigmatically semantic

tasks, as demonstrated in the work of Turing and Good, Bullinaria and Levy,

and Skyrms.

S-vector semantics is appropriate as a theory of natural meaning, especially

the meaning conveyed by natural signs, as this meaning supervenes on stable

correlations in the environment. However, conventional symbols may also

bear s-vector content when they stand in stable correlations with each

other, such as words in a corpus. The s-vector, or natural, meaning borne

by conventional symbols is not equivalent to their conventional meaning, it is

content they convey about each other, not about the world. It may be surpris-

ing to philosophers that this s-vector meaning is nevertheless adequate to sort

conventional symbols into semantic and syntactic categories, and to assess

relations of synonymy and antonymy, yet this is a feature of the natural

meaning in conventional symbol systems that cryptology has relied on for

its several thousand year history.

Although s-vector content is inherently probabilistic, it may be viewed

through a Gricean lens and interpreted as factive. The insight here is that

the change in probabilities conveyed by a signal may be veridical, even

when high probability events do not obtain—smoke may convey the informa-

tion that fire is more likely, even when there is no fire. Nevertheless, one might

also wonder if s-vector semantics may subvene a naturalistic account of com-

munication or representation error. I conjecture that some naturalistic ‘error’,
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or mismatch between content and world, might emerge in a situation where

probabilities are not in fact stable, but change with time. Shannon informa-

tion, s-vector semantics, and probabilistic theories of inference all typically

assume that the world is ergodic, that is, that underlying probabilities remain

stable and are reflected in observed, long-run frequencies. Developing a meta-

physics for a non-ergodic world, and understanding what information, infer-

ence, and natural meaning might amount to in such a world, is a topic for

future research.
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